Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake

  1. Moritz Armbruster
  2. Chris G Dulla
  3. Jeffrey S Diamond  Is a corresponding author
  1. Tufts University School of Medicine, United States
  2. NIH, United States

Abstract

Genetically encoded fluorescent glutamate indicators (iGluSnFRs) enable neurotransmitter release and diffusion to be visualized in intact tissue. Synaptic iGluSnFR signal time courses vary widely depending on experimental conditions, often lasting 10-100 times longer than the extracellular lifetime of synaptically released glutamate estimated with uptake measurements. iGluSnFR signals typically also decay much more slowly than the unbinding kinetics of the indicator. To resolve these discrepancies, here we have modeled synaptic glutamate diffusion, uptake and iGluSnFR activation to identify factors influencing iGluSnFR signal waveforms. Simulations suggested that iGluSnFR competes with transporters to bind synaptically released glutamate, delaying glutamate uptake. Accordingly, synaptic transporter currents recorded from iGluSnFR-expressing astrocytes in mouse cortex were slower than those in control astrocytes. Simulations also suggested that iGluSnFR reduces free glutamate levels in extrasynaptic spaces, likely limiting extrasynaptic receptor activation. iGluSnFR and lower-affinity variants nonetheless provide linear indications of vesicle release, underscoring their value for optical quantal analysis.

Data availability

MATLAB code used to perform the simulations in this study are included with the manuscript and supporting files. The IgorPro experiment file containing all of the simulation data is available athttps://nih.box.com/s/ttnppg1kzc4ur9d4ahmfpl2j0m7rvfsm.Source data files for Figure 4 are available at https://tufts.app.box.com/s/ptkpd4wig9njz2y9egocgenu3utkehae.

Article and author information

Author details

  1. Moritz Armbruster

    Department of Neuroscience, Tufts University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chris G Dulla

    Neuroscience, Tufts University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6560-6535
  3. Jeffrey S Diamond

    NINDS, NIH, Bethesda, United States
    For correspondence
    diamondj@ninds.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1770-2629

Funding

National Institute of Neurological Disorders and Stroke (NS003039)

  • Jeffrey S Diamond

National Institute of Neurological Disorders and Stroke (NS113499)

  • Chris G Dulla

National Institute of Neurological Disorders and Stroke (NS104478)

  • Chris G Dulla

National Institute of Neurological Disorders and Stroke (NS100796)

  • Chris G Dulla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols were approved by the Tufts Institutional Animal Care and Use Committee (protocol #B2019-48).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,768
    views
  • 623
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moritz Armbruster
  2. Chris G Dulla
  3. Jeffrey S Diamond
(2020)
Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake
eLife 9:e54441.
https://doi.org/10.7554/eLife.54441

Share this article

https://doi.org/10.7554/eLife.54441

Further reading

    1. Neuroscience
    Lian Hollander-Cohen, Omer Cohen ... Berta Levavi-Sivan
    Research Article

    Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view. Here, we reveal that the satiety hormone cholecystokinin (CCK) is the primary regulator of this axis in zebrafish. We found that FSH cells express a CCK receptor, and our findings demonstrate that mutating this receptor results in a severe hindrance to ovarian development. Additionally, it causes a complete shutdown of both gonadotropins secretion. Using in-vivo and ex-vivo calcium imaging of gonadotrophs, we show that GnRH predominantly activates LH cells, whereas FSH cells respond to CCK stimulation, designating CCK as the bona fide FSH secretagogue. These findings indicate that the control of gametogenesis in fish was placed under different neural circuits, that are gated by CCK.

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.