Nodal and Planar Cell Polarity signaling cooperate to regulate zebrafish convergence and extension gastrulation movements

  1. Margot L K Williams  Is a corresponding author
  2. Lilianna Solnica-Krezel
  1. Baylor College of Medicine, United States
  2. Washington University School of Medicine, United States

Abstract

During vertebrate gastrulation, convergence & extension (C&E) of the primary anteroposterior (AP) embryonic axis is driven by polarized mediolateral (ML) cell intercalations and is influenced by AP axial patterning. Nodal signaling is essential for patterning of the AP axis while Planar Cell Polarity (PCP) signaling polarizes cells with respect to this axis, but how these two signaling systems interact during C&E is unclear. We find that the neuroectoderm of Nodal-deficient zebrafish gastrulae exhibits reduced C&E cell behaviors, which require Nodal signaling in both cell- and non-autonomous fashions. PCP signaling is partially active in Nodal-deficient embryos and its inhibition exacerbates their C&E defects. Within otherwise naïve zebrafish blastoderm explants, however, Nodal induces C&E in a largely PCP-dependent manner, arguing that Nodal acts both upstream of and in parallel with PCP during gastrulation to cooperatively regulate embryonic axis extension.

Data availability

Sequencing data have been deposited in GEO under accession code GSE147302. Processed RNA-seq data have been provided in Source Data Files 1 & 2

The following data sets were generated

Article and author information

Author details

  1. Margot L K Williams

    Center for Precision Environmental Health, Baylor College of Medicine, Houston, United States
    For correspondence
    Margot.Williams@BCM.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9704-6301
  2. Lilianna Solnica-Krezel

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (K99HD091386)

  • Margot L K Williams

National Institute of General Medical Sciences (R35GM118179)

  • Lilianna Solnica-Krezel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Adult zebrafish were raised and maintained according to established methods and in compliance with standards established by the Washington University Animal Care and Use Committee (IACUC), approval number 20160116; Animal Welfare Assurance number A-3381-01.

Copyright

© 2020, Williams & Solnica-Krezel

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,878
    views
  • 551
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margot L K Williams
  2. Lilianna Solnica-Krezel
(2020)
Nodal and Planar Cell Polarity signaling cooperate to regulate zebrafish convergence and extension gastrulation movements
eLife 9:e54445.
https://doi.org/10.7554/eLife.54445

Share this article

https://doi.org/10.7554/eLife.54445

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.