Control of adaptive action selection by secondary motor cortex during flexible visual categorization
Abstract
Adaptive action selection during stimulus categorization is an important feature of flexible behavior. To examine neural mechanism underlying this process, we trained mice to categorize the spatial frequencies of visual stimuli according to a boundary that changed between blocks of trials in a session. Using a model with a dynamic decision criterion, we found that sensory history was important for adaptive action selection after the switch of boundary. Bilateral inactivation of the secondary motor cortex (M2) impaired adaptive action selection by reducing the behavioral influence of sensory history. Electrophysiological recordings showed that M2 neurons carried more information about upcoming choice and previous sensory stimuli when sensorimotor association was being remapped than when it was stable. Thus, M2 causally contributes to flexible action selection during stimulus categorization, with the representations of upcoming choice and sensory history regulated by the demand to remap stimulus-action association.
Data availability
All data generated or analyzed during this study are available on Dryad https://doi.org/10.5061/dryad.1c59zw3rs. Source data files have been provided for Figures 1-6.
-
Data from: Control of adaptive action selection by secondary motor cortex during flexible visual categorizationDryad Digital Repository, 10.5061/dryad.1c59zw3rs.
Article and author information
Author details
Funding
Strategic Priority Research Program of Chinese Academy of Sciences (XDB32010200)
- Haishan Yao
Shanghai Municiple Science and Technology Major Project (2018SHZDZX05)
- Haishan Yao
National Natural Science Foundation of China (31571079,31771151)
- Haishan Yao
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal use procedures were approved by the Animal Care and Use Committee at the Institute of Neuroscience, Chinese Academy of Sciences (approval number NA-013-2019), and were in accordance with the guidelines of the Animal Advisory Committee at the Shanghai Institutes for Biological Sciences.
Copyright
© 2020, Wang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,984
- views
-
- 284
- downloads
-
- 22
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 22
- citations for umbrella DOI https://doi.org/10.7554/eLife.54474