Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy

  1. Enya Paschen  Is a corresponding author
  2. Claudio Elgueta
  3. Katharina Heining
  4. Diego M Vieira
  5. Piret Kleis
  6. Catarina Orcinha
  7. Ute Häussler
  8. Marlene Bartos
  9. Ulrich Egert
  10. Philipp Janz
  11. Carola A Haas  Is a corresponding author
  1. Medical Center - University of Freiburg, Faculty of Medicine, Germany
  2. University of Freiburg, Germany
  3. Faculty of Engineering, University of Freiburg, Germany

Abstract

Mesial temporal lobe epilepsy (MTLE) is the most common form of focal, pharmacoresistant epilepsy in adults and is often associated with hippocampal sclerosis. Here, we established the efficacy of optogenetic and electrical low-frequency stimulation (LFS) in interfering with seizure generation in a mouse model of MTLE. Specifically, we applied LFS in the sclerotic hippocampus to study the effects on spontaneous subclinical and evoked generalized seizures. We found that stimulation at 1 Hz for one hour resulted in an almost complete suppression of spontaneous seizures in both hippocampi. This seizure-suppressive action during daily stimulation remained stable over several weeks. Furthermore, LFS for 30 min before a pro-convulsive stimulus successfully prevented seizure generalization. Finally, acute slice experiments revealed a reduced efficacy of perforant path transmission onto granule cells upon LFS. Taken together, our results suggest that hippocampal LFS constitutes a promising approach for seizure control in MTLE.

Data availability

The LFP dataset is available on Open Science Framework: https://osf.io/uk94m/. The source code files for the seizure detection algorithm is accessible at Zenodo (DOI: 10.5281/zenodo.4110614). The source code for the seizure detection algorithm (Heining et al., 2019) was developed using previously published LFP data (Froriep et al., 2012; Janz et al., 2017b).

The following data sets were generated

Article and author information

Author details

  1. Enya Paschen

    Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
    For correspondence
    enya.paschen@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Claudio Elgueta

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Katharina Heining

    Laboratory for Biomicrotechnology, Dept. of Microsystems Engineering, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Diego M Vieira

    Biomicrotechnology, Dept. of Microsystems Engineering - IMTEK, Faculty of Engineering, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8005-134X
  5. Piret Kleis

    Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Catarina Orcinha

    Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ute Häussler

    Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Marlene Bartos

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9741-1946
  9. Ulrich Egert

    Biomicrotechnology, Dept. of Microsystems Engineering - IMTEK, Faculty of Engineering, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4583-0425
  10. Philipp Janz

    Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Carola A Haas

    Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
    For correspondence
    carola.haas@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7022-4136

Funding

Deutsche Forschungsgemeinschaft (EXC 1086)

  • Ute Häussler
  • Marlene Bartos
  • Ulrich Egert
  • Carola A Haas

Deutsche Forschungsgemeinschaft (HA 1443/11-1)

  • Carola A Haas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were carried out in accordance with the guidelines of the European Community's Council Directive of 22 September 2010 (2010/63/EU) and were approved by the regional council (Regierungspräsidium Freiburg).

Copyright

© 2020, Paschen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,791
    views
  • 573
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Enya Paschen
  2. Claudio Elgueta
  3. Katharina Heining
  4. Diego M Vieira
  5. Piret Kleis
  6. Catarina Orcinha
  7. Ute Häussler
  8. Marlene Bartos
  9. Ulrich Egert
  10. Philipp Janz
  11. Carola A Haas
(2020)
Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy
eLife 9:e54518.
https://doi.org/10.7554/eLife.54518

Share this article

https://doi.org/10.7554/eLife.54518

Further reading

    1. Neuroscience
    Célian Bimbard, Flóra Takács ... Philip Coen
    Tools and Resources

    Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.

    1. Neuroscience
    Ana Fló, Lucas Benjamin ... Ghislaine Dehaene-Lambertz
    Research Article

    Interest in statistical learning in developmental studies stems from the observation that 8-month-olds were able to extract words from a monotone speech stream solely using the transition probabilities (TP) between syllables (Saffran et al., 1996). A simple mechanism was thus part of the human infant’s toolbox for discovering regularities in language. Since this seminal study, observations on statistical learning capabilities have multiplied across domains and species, challenging the hypothesis of a dedicated mechanism for language acquisition. Here, we leverage the two dimensions conveyed by speech –speaker identity and phonemes– to examine (1) whether neonates can compute TPs on one dimension despite irrelevant variation on the other and (2) whether the linguistic dimension enjoys an advantage over the voice dimension. In two experiments, we exposed neonates to artificial speech streams constructed by concatenating syllables while recording EEG. The sequence had a statistical structure based either on the phonetic content, while the voices varied randomly (Experiment 1) or on voices with random phonetic content (Experiment 2). After familiarisation, neonates heard isolated duplets adhering, or not, to the structure they were familiarised with. In both experiments, we observed neural entrainment at the frequency of the regularity and distinct Event-Related Potentials (ERP) to correct and incorrect duplets, highlighting the universality of statistical learning mechanisms and suggesting it operates on virtually any dimension the input is factorised. However, only linguistic duplets elicited a specific ERP component, potentially an N400 precursor, suggesting a lexical stage triggered by phonetic regularities already at birth. These results show that, from birth, multiple input regularities can be processed in parallel and feed different higher-order networks.