Abstract

Tissue homeostasis relies on the fine regulation between stem and progenitor cell maintenance and lineage commitment. In the adult prostate, stem cells have been identified in both basal and luminal cell compartments. However, basal stem/progenitor cell homeostasis is still poorly understood. We show that basal stem/progenitor cell maintenance is regulated by a balance between BMP5 self-renewal signal and GATA3 dampening activity. Deleting Gata3 enhances adult prostate stem/progenitor cells self-renewal capacity in both organoid and allograft assays. This phenotype results from a local increase in BMP5 activity in basal cells as shown by the impaired self-renewal capacity of Bmp5-deficient stem/progenitor cells. Strikingly, Bmp5 gene inactivation or BMP signaling inhibition with a small molecule inhibitor are also sufficient to delay prostate and skin cancer initiation of Pten-deficient mice. Together, these results establish BMP5 as a key regulator of basal prostate stem cell homeostasis and identifies a potential therapeutic approach against Pten-deficient cancers.

Data availability

Data from this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1ABC-2C-3ABC-4AEFJ-2S1AC-4S1AB.Sequencing data have been deposited in GEO under accession codes GSE155289.

The following data sets were generated

Article and author information

Author details

  1. Mathieu Tremblay

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophie Viala

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Maxwell ER Shafer

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Adda-Lee Graham-Paquin

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Chloe Liu

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Maxime Bouchard

    Goodman Cancer Research Centre/ Biochemistry, McGill University, Montreal, Canada
    For correspondence
    maxime.bouchard@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7619-9680

Funding

Canadian Institutes of Health Research (MOP-130460)

  • Maxime Bouchard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Charles L Sawyers, Memorial Sloan Kettering Cancer Center, United States

Ethics

Animal experimentation: All animal procedures were approved by McGill University Animal Care Committee (Permit#2011-5954) according to the Canadian Council on Animal Care guidelines for use of laboratory animals in biological research.

Version history

  1. Received: January 31, 2020
  2. Accepted: September 6, 2020
  3. Accepted Manuscript published: September 7, 2020 (version 1)
  4. Version of Record published: September 29, 2020 (version 2)

Copyright

© 2020, Tremblay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,496
    views
  • 229
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mathieu Tremblay
  2. Sophie Viala
  3. Maxwell ER Shafer
  4. Adda-Lee Graham-Paquin
  5. Chloe Liu
  6. Maxime Bouchard
(2020)
Regulation of stem/progenitor cell maintenance by BMP5 in prostate homeostasis and cancer initiation
eLife 9:e54542.
https://doi.org/10.7554/eLife.54542

Share this article

https://doi.org/10.7554/eLife.54542

Further reading

    1. Stem Cells and Regenerative Medicine
    Magali Seguret, Patricia Davidson ... Jean-Sébastien Hulot
    Research Article

    We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.

    1. Stem Cells and Regenerative Medicine
    Shintaro Watanuki, Hiroshi Kobayashi ... Keiyo Takubo
    Research Article

    Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.