Abstract

Tissue homeostasis relies on the fine regulation between stem and progenitor cell maintenance and lineage commitment. In the adult prostate, stem cells have been identified in both basal and luminal cell compartments. However, basal stem/progenitor cell homeostasis is still poorly understood. We show that basal stem/progenitor cell maintenance is regulated by a balance between BMP5 self-renewal signal and GATA3 dampening activity. Deleting Gata3 enhances adult prostate stem/progenitor cells self-renewal capacity in both organoid and allograft assays. This phenotype results from a local increase in BMP5 activity in basal cells as shown by the impaired self-renewal capacity of Bmp5-deficient stem/progenitor cells. Strikingly, Bmp5 gene inactivation or BMP signaling inhibition with a small molecule inhibitor are also sufficient to delay prostate and skin cancer initiation of Pten-deficient mice. Together, these results establish BMP5 as a key regulator of basal prostate stem cell homeostasis and identifies a potential therapeutic approach against Pten-deficient cancers.

Data availability

Data from this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1ABC-2C-3ABC-4AEFJ-2S1AC-4S1AB.Sequencing data have been deposited in GEO under accession codes GSE155289.

The following data sets were generated

Article and author information

Author details

  1. Mathieu Tremblay

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophie Viala

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Maxwell ER Shafer

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Adda-Lee Graham-Paquin

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Chloe Liu

    Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Maxime Bouchard

    Goodman Cancer Research Centre/ Biochemistry, McGill University, Montreal, Canada
    For correspondence
    maxime.bouchard@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7619-9680

Funding

Canadian Institutes of Health Research (MOP-130460)

  • Maxime Bouchard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Charles L Sawyers, Memorial Sloan Kettering Cancer Center, United States

Ethics

Animal experimentation: All animal procedures were approved by McGill University Animal Care Committee (Permit#2011-5954) according to the Canadian Council on Animal Care guidelines for use of laboratory animals in biological research.

Version history

  1. Received: January 31, 2020
  2. Accepted: September 6, 2020
  3. Accepted Manuscript published: September 7, 2020 (version 1)
  4. Version of Record published: September 29, 2020 (version 2)

Copyright

© 2020, Tremblay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,525
    views
  • 234
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mathieu Tremblay
  2. Sophie Viala
  3. Maxwell ER Shafer
  4. Adda-Lee Graham-Paquin
  5. Chloe Liu
  6. Maxime Bouchard
(2020)
Regulation of stem/progenitor cell maintenance by BMP5 in prostate homeostasis and cancer initiation
eLife 9:e54542.
https://doi.org/10.7554/eLife.54542

Share this article

https://doi.org/10.7554/eLife.54542

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Parthasarathy Sampathkumar, Heekyung Jung ... Yang Li
    Research Article

    Molecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. The human hepatic lectin asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETS) to drive tissue-specific degradation of ZNRF3/RNF43 E3 ubiquitin ligases, which achieved hepatocyte-specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models, and an antibody–RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1- and ASGR1/2-specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on opposing sides of ASGR, away from the substrate-binding site. Both antibodies enhanced Wnt activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulate ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and degradation mechanisms in a single molecule.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article Updated

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.