1. Cell Biology
Download icon

Asymmetric clustering of centrosomes defines the early evolution of tetraploid cells

Research Article
  • Cited 3
  • Views 1,213
  • Annotations
Cite this article as: eLife 2020;9:e54565 doi: 10.7554/eLife.54565

Abstract

Tetraploidy has long been of interest to both cell and cancer biologists, partly because of its documented role in tumorigenesis. A common model proposes that the extra centrosomes that are typically acquired during tetraploidization are responsible for driving tumorigenesis. However, tetraploid cells evolved in culture have been shown to lack extra centrosomes. This observation raises questions about how tetraploid cells evolve and more specifically about the mechanisms(s) underlying centrosome loss. Here, using a combination of fixed cell analysis, live cell imaging, and mathematical modeling, we show that populations of newly formed tetraploid cells rapidly evolve in vitro to retain a near-tetraploid chromosome number while losing the extra centrosomes gained at the time of tetraploidization. This appears to happen through a process of natural selection in which tetraploid cells that inherit a single centrosome during a bipolar division with asymmetric centrosome clustering are favored for long-term survival.

Article and author information

Author details

  1. Nicolaas C Baudoin

    Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua M Nicholson

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kimberly Soto

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Olga Martin

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing Chen

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    For correspondence
    chenjing@vt.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniela Cimini

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    For correspondence
    cimini@vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4082-4894

Funding

Virginia Tech College of Science (Dean's Discovery Fund)

  • Daniela Cimini

Fralin Life Sciences Institute (Discretionary funds)

  • Daniela Cimini

ICTAS Center for Engineered Health (Seed funding)

  • Daniela Cimini

National Science Foundation (MCB-1517506)

  • Daniela Cimini

Virginia Tech Graduate School (BIOTRANS IGEP)

  • Nicolaas C Baudoin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jon Pines, Institute of Cancer Research Research, United Kingdom

Publication history

  1. Received: December 19, 2019
  2. Accepted: April 28, 2020
  3. Accepted Manuscript published: April 29, 2020 (version 1)
  4. Version of Record published: May 26, 2020 (version 2)
  5. Version of Record updated: June 5, 2020 (version 3)

Copyright

© 2020, Baudoin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,213
    Page views
  • 279
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Neta Erez et al.
    Research Article Updated

    A hallmark of aging is loss of differentiated cell identity. Aged Drosophila midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs. Seventeen genes were identified, including the deubiquitinase Non-stop (CG4166). Lineage tracing established that acute loss of Non-stop in young ECs phenocopies aged ECs at cellular and tissue levels. Proteomic analysis unveiled that Non-stop maintains identity as part of a Non-stop identity complex (NIC) containing E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98. Non-stop ensured chromatin accessibility, maintaining the EC-gene signature, and protected NIC subunit stability. Upon aging, the levels of Non-stop and NIC subunits declined, distorting the unique organization of the EC nucleus. Maintaining youthful levels of Non-stop in wildtype aged ECs safeguards NIC subunits, nuclear organization, and suppressed aging phenotypes. Thus, Non-stop and NIC, supervise EC identity and protects from premature aging.

    1. Cell Biology
    2. Neuroscience
    Friederike Elisabeth Kohrs et al.
    Tools and Resources

    Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.