Asymmetric clustering of centrosomes defines the early evolution of tetraploid cells

Abstract

Tetraploidy has long been of interest to both cell and cancer biologists, partly because of its documented role in tumorigenesis. A common model proposes that the extra centrosomes that are typically acquired during tetraploidization are responsible for driving tumorigenesis. However, tetraploid cells evolved in culture have been shown to lack extra centrosomes. This observation raises questions about how tetraploid cells evolve and more specifically about the mechanisms(s) underlying centrosome loss. Here, using a combination of fixed cell analysis, live cell imaging, and mathematical modeling, we show that populations of newly formed tetraploid cells rapidly evolve in vitro to retain a near-tetraploid chromosome number while losing the extra centrosomes gained at the time of tetraploidization. This appears to happen through a process of natural selection in which tetraploid cells that inherit a single centrosome during a bipolar division with asymmetric centrosome clustering are favored for long-term survival.

Data availability

All data generated during the study are provided in clearly labeled source data files in excel format.

Article and author information

Author details

  1. Nicolaas C Baudoin

    Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua M Nicholson

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kimberly Soto

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Olga Martin

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing Chen

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    For correspondence
    chenjing@vt.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniela Cimini

    Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, United States
    For correspondence
    cimini@vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4082-4894

Funding

Virginia Tech College of Science (Dean's Discovery Fund)

  • Daniela Cimini

Fralin Life Sciences Institute (Discretionary funds)

  • Daniela Cimini

ICTAS Center for Engineered Health (Seed funding)

  • Daniela Cimini

National Science Foundation (MCB-1517506)

  • Daniela Cimini

Virginia Tech Graduate School (BIOTRANS IGEP)

  • Nicolaas C Baudoin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Baudoin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,005
    views
  • 500
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolaas C Baudoin
  2. Joshua M Nicholson
  3. Kimberly Soto
  4. Olga Martin
  5. Jing Chen
  6. Daniela Cimini
(2020)
Asymmetric clustering of centrosomes defines the early evolution of tetraploid cells
eLife 9:e54565.
https://doi.org/10.7554/eLife.54565

Share this article

https://doi.org/10.7554/eLife.54565

Further reading

    1. Cell Biology
    Fabian Link, Sisco Jung ... Brooke Morriswood
    Research Article

    The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.

    1. Cell Biology
    Georgia Maria Sagia, Xenia Georgiou ... Sofia Dimou
    Research Article Updated

    Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.