Altered hippocampal-prefrontal communication during anxiety-related avoidance in mice deficient for the autism-associated gene Pogz

Abstract

Many genes have been linked to autism. However, it remains unclear what long-term changes in neural circuitry result from disruptions in these genes, and how these circuit changes might contribute to abnormal behaviors. To address these questions, we studied behavior and physiology in mice heterozygous for Pogz, a high confidence autism gene. Pogz+/- mice exhibit reduced anxiety-related avoidance in the elevated plus maze (EPM). Theta-frequency communication between the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) is known to be necessary for normal avoidance in the EPM. We found deficient theta-frequency synchronization between the vHPC and mPFC in vivo. When we examined vHPC-mPFC communication at higher resolution, vHPC input onto prefrontal GABAergic interneurons was specifically disrupted, whereas input onto pyramidal neurons remained intact. These findings illustrate how the loss of a high confidence autism gene can impair long-range communication by causing inhibitory circuit dysfunction within pathways important for specific behaviors.

Data availability

All data has been deposited in Dryad, DOI: doi:10.7272/Q6ZP44B9All code has been deposited in GitHub: https://github.com/mcunniff/PogZ_paper

The following data sets were generated

Article and author information

Author details

  1. Margaret M Cunniff

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Eirene Markenscoff-Papadimitriou

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Julia Ostrowski

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. John LR Rubenstein

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    John LR Rubenstein, JLRR is cofounder, stockholder, and currently on the scientific board of Neurona, a company studying the potential therapeutic use of interneuron transplantation..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-7667
  5. Vikaas Singh Sohal

    Psychiatry, University of California, San Francisco, San Francisco, United States
    For correspondence
    vikaas.sohal@ucsf.edu
    Competing interests
    Vikaas Singh Sohal, VSS has received research funding from Neurona therapeutics and is on the scientific board of Empathic Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2238-4186

Funding

Simons Foundation (399853 and 514438)

  • Margaret M Cunniff
  • Eirene Markenscoff-Papadimitriou
  • Julia Ostrowski
  • John LR Rubenstein
  • Vikaas Singh Sohal

National Institute of Mental Health (R56MH117961 and R01MH117961)

  • Margaret M Cunniff
  • Vikaas Singh Sohal

Weill Insitute for Neurosciences

  • Vikaas Singh Sohal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Ethics

Animal experimentation: All experiments were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of California, San Francisco (IACUC protocol #AN170116).

Version history

  1. Received: January 2, 2020
  2. Accepted: November 5, 2020
  3. Accepted Manuscript published: November 6, 2020 (version 1)
  4. Version of Record published: November 23, 2020 (version 2)

Copyright

© 2020, Cunniff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,290
    views
  • 335
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margaret M Cunniff
  2. Eirene Markenscoff-Papadimitriou
  3. Julia Ostrowski
  4. John LR Rubenstein
  5. Vikaas Singh Sohal
(2020)
Altered hippocampal-prefrontal communication during anxiety-related avoidance in mice deficient for the autism-associated gene Pogz
eLife 9:e54835.
https://doi.org/10.7554/eLife.54835

Share this article

https://doi.org/10.7554/eLife.54835

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.