Distinct signals in medial and lateral VTA dopamine neurons modulate fear extinction at different times

Abstract

Dopamine (DA) neurons are known to encode reward prediction error (RPE), in addition to other signals, such as salience. While RPE is known to support learning, the role of salience in supporting learning remains less clear. To address this, we recorded and manipulated VTA DA neurons in mice during fear extinction, a behavior we observed to generate spatially segregated RPE and salience signals. We applied deep learning to classify mouse freezing behavior, eliminating the need for human scoring. Our fiber photometry recordings showed that DA neurons in medial and lateral VTA have distinct activity profiles during fear extinction: medial VTA activity more closely reflected RPE, while lateral VTA activity more closely reflected a salience-like signal. Optogenetic inhibition of DA neurons in either region slowed fear extinction, with the relevant time period for inhibition differing across regions. Our results indicate that salience-like signals can have similar downstream consequences to RPE-like signals, although with different temporal dependencies.

Data availability

All data generated or analysed during this study will be included in the manuscript as supporting files. Code for all steps is available on GitHub:https://github.com/neurocaience/deepfreeze/ (Cai et al. 2020)

Article and author information

Author details

  1. Lili X Cai

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Katherine Pizano

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregory W Gundersen

    Computer Science, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cameron L Hayes

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0388-5807
  5. Weston T Fleming

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sebastian Holt

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Julia M Cox

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ilana B Witten

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    iwitten@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0548-2160

Funding

NIH (T32MH065214)

  • Lili X Cai

NYSCF

  • Ilana B Witten

ARO (W911NF1710554)

  • Ilana B Witten

NIH (1R01MH106689-01A1)

  • Ilana B Witten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments followed guidelines established by the National Institutes of Health and reviewed by Princeton University Institutional Animals Care and Use Committee (IACUC protocol 1876-18).

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Publication history

  1. Received: January 7, 2020
  2. Accepted: June 5, 2020
  3. Accepted Manuscript published: June 10, 2020 (version 1)
  4. Accepted Manuscript updated: June 11, 2020 (version 2)
  5. Version of Record published: July 15, 2020 (version 3)
  6. Version of Record updated: July 27, 2020 (version 4)

Copyright

© 2020, Cai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,234
    Page views
  • 587
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lili X Cai
  2. Katherine Pizano
  3. Gregory W Gundersen
  4. Cameron L Hayes
  5. Weston T Fleming
  6. Sebastian Holt
  7. Julia M Cox
  8. Ilana B Witten
(2020)
Distinct signals in medial and lateral VTA dopamine neurons modulate fear extinction at different times
eLife 9:e54936.
https://doi.org/10.7554/eLife.54936

Further reading

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.

    1. Neuroscience
    Arefeh Sherafati et al.
    Research Article Updated

    Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.