A calibrated optogenetic toolbox of stable zebrafish opsin lines

  1. Paride Antinucci
  2. Adna Dumitrescu
  3. Charlotte Deleuze  Is a corresponding author
  4. Holly J Morley
  5. Kristie Leung
  6. Tom Hagley
  7. Fumi Kubo
  8. Herwig Baier
  9. Isaac H Bianco  Is a corresponding author
  10. Claire Wyart  Is a corresponding author
  1. University College London, United Kingdom
  2. Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France
  3. Max Planck Institute of Neurobiology, Germany

Abstract

Optogenetic actuators with diverse spectral tuning, ion selectivity and kinetics are constantly being engineered providing powerful tools for controlling neural activity with subcellular resolution and millisecond precision. Achieving reliable and interpretable in vivo optogenetic manipulations requires reproducible actuator expression and calibration of photocurrents in target neurons. Here, we developed nine transgenic zebrafish lines for stable opsin expression and calibrated their efficacy in vivo. We first used high-throughput behavioural assays to compare opsin ability to elicit or silence neural activity. Next, we performed in vivo whole-cell electrophysiological recordings to quantify the amplitude and kinetics of photocurrents and test opsin ability to precisely control spiking. We observed substantial variation in efficacy, associated with differences in both opsin expression level and photocurrent characteristics, and identified conditions for optimal use of the most efficient opsins. Overall, our calibrated optogenetic toolkit will facilitate the design of controlled optogenetic circuit manipulations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures.

Article and author information

Author details

  1. Paride Antinucci

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0573-5383
  2. Adna Dumitrescu

    Neurophysiology and Systems Neuroscience, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  3. Charlotte Deleuze

    Neurophysiology and Systems Neuroscience, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    For correspondence
    charlotte.deleuze@icm-institute.org
    Competing interests
    No competing interests declared.
  4. Holly J Morley

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0007-3563
  5. Kristie Leung

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  6. Tom Hagley

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Fumi Kubo

    Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    No competing interests declared.
  8. Herwig Baier

    Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7268-0469
  9. Isaac H Bianco

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    i.bianco@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3149-4862
  10. Claire Wyart

    Neurophysiology & Systems neuroscience, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    For correspondence
    claire.wyart@icm-institute.org
    Competing interests
    Claire Wyart, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1668-4975

Funding

Horizon 2020 Framework Programme (Marie Curie Incoming International Fellowship,H2020-MSCA-IF-2016 Project #752199)

  • Adna Dumitrescu

Human Frontier Science Program (RGP063-2018)

  • Claire Wyart

New York Stem Cell Foundation (NYSCF-R-NI39)

  • Claire Wyart

Wellcome (Sir Henry Wellcome Postdoctoral Fellowship,204708/Z/16/Z)

  • Paride Antinucci

Wellcome (Sir Henry Dale Fellowship,101195/Z/13/Z)

  • Isaac H Bianco

Royal Society (Sir Henry Dale Fellowship,101195/Z/13/Z)

  • Isaac H Bianco

University College London (Excellence Fellowship)

  • Isaac H Bianco

Human Frontier Science Program (Long-term Fellowship,LT393/2010)

  • Fumi Kubo

Deutsche Forschungsgemeinschaft (Next-Generation Optogenetics,SPP1926)

  • Herwig Baier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All larvae used for behavioural assays were fed Paramecia from 4 dpf onward. Animal handling and experimental procedures were approved by the UCL Animal Welfare Ethical Review Body and the UK Home Office under the Animal (Scientific Procedures) Act 1986.In vivo electrophysiological recordings were performed in 5-6 dpf zebrafish larvae from AB and Tüpfel long fin (TL) strains in accordance with the European Communities Council Directive (2010/63/EU) and French law (87/848) and approved by the Institut du Cerveau et de la Moelle épinière, the French ministry of Research and the Darwin Ethics Committee (APAFIS protocol #16469-2018071217081175v5).

Copyright

© 2020, Antinucci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,738
    views
  • 770
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paride Antinucci
  2. Adna Dumitrescu
  3. Charlotte Deleuze
  4. Holly J Morley
  5. Kristie Leung
  6. Tom Hagley
  7. Fumi Kubo
  8. Herwig Baier
  9. Isaac H Bianco
  10. Claire Wyart
(2020)
A calibrated optogenetic toolbox of stable zebrafish opsin lines
eLife 9:e54937.
https://doi.org/10.7554/eLife.54937

Share this article

https://doi.org/10.7554/eLife.54937

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.