A calibrated optogenetic toolbox of stable zebrafish opsin lines

  1. Paride Antinucci
  2. Adna Dumitrescu
  3. Charlotte Deleuze  Is a corresponding author
  4. Holly J Morley
  5. Kristie Leung
  6. Tom Hagley
  7. Fumi Kubo
  8. Herwig Baier
  9. Isaac H Bianco  Is a corresponding author
  10. Claire Wyart  Is a corresponding author
  1. University College London, United Kingdom
  2. Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France
  3. Max Planck Institute of Neurobiology, Germany

Abstract

Optogenetic actuators with diverse spectral tuning, ion selectivity and kinetics are constantly being engineered providing powerful tools for controlling neural activity with subcellular resolution and millisecond precision. Achieving reliable and interpretable in vivo optogenetic manipulations requires reproducible actuator expression and calibration of photocurrents in target neurons. Here, we developed nine transgenic zebrafish lines for stable opsin expression and calibrated their efficacy in vivo. We first used high-throughput behavioural assays to compare opsin ability to elicit or silence neural activity. Next, we performed in vivo whole-cell electrophysiological recordings to quantify the amplitude and kinetics of photocurrents and test opsin ability to precisely control spiking. We observed substantial variation in efficacy, associated with differences in both opsin expression level and photocurrent characteristics, and identified conditions for optimal use of the most efficient opsins. Overall, our calibrated optogenetic toolkit will facilitate the design of controlled optogenetic circuit manipulations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures.

Article and author information

Author details

  1. Paride Antinucci

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0573-5383
  2. Adna Dumitrescu

    Neurophysiology and Systems Neuroscience, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    Competing interests
    No competing interests declared.
  3. Charlotte Deleuze

    Neurophysiology and Systems Neuroscience, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    For correspondence
    charlotte.deleuze@icm-institute.org
    Competing interests
    No competing interests declared.
  4. Holly J Morley

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0007-3563
  5. Kristie Leung

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  6. Tom Hagley

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Fumi Kubo

    Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    No competing interests declared.
  8. Herwig Baier

    Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7268-0469
  9. Isaac H Bianco

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    i.bianco@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3149-4862
  10. Claire Wyart

    Neurophysiology & Systems neuroscience, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
    For correspondence
    claire.wyart@icm-institute.org
    Competing interests
    Claire Wyart, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1668-4975

Funding

Horizon 2020 Framework Programme (Marie Curie Incoming International Fellowship,H2020-MSCA-IF-2016 Project #752199)

  • Adna Dumitrescu

Human Frontier Science Program (RGP063-2018)

  • Claire Wyart

New York Stem Cell Foundation (NYSCF-R-NI39)

  • Claire Wyart

Wellcome (Sir Henry Wellcome Postdoctoral Fellowship,204708/Z/16/Z)

  • Paride Antinucci

Wellcome (Sir Henry Dale Fellowship,101195/Z/13/Z)

  • Isaac H Bianco

Royal Society (Sir Henry Dale Fellowship,101195/Z/13/Z)

  • Isaac H Bianco

University College London (Excellence Fellowship)

  • Isaac H Bianco

Human Frontier Science Program (Long-term Fellowship,LT393/2010)

  • Fumi Kubo

Deutsche Forschungsgemeinschaft (Next-Generation Optogenetics,SPP1926)

  • Herwig Baier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All larvae used for behavioural assays were fed Paramecia from 4 dpf onward. Animal handling and experimental procedures were approved by the UCL Animal Welfare Ethical Review Body and the UK Home Office under the Animal (Scientific Procedures) Act 1986.In vivo electrophysiological recordings were performed in 5-6 dpf zebrafish larvae from AB and Tüpfel long fin (TL) strains in accordance with the European Communities Council Directive (2010/63/EU) and French law (87/848) and approved by the Institut du Cerveau et de la Moelle épinière, the French ministry of Research and the Darwin Ethics Committee (APAFIS protocol #16469-2018071217081175v5).

Copyright

© 2020, Antinucci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,338
    views
  • 742
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paride Antinucci
  2. Adna Dumitrescu
  3. Charlotte Deleuze
  4. Holly J Morley
  5. Kristie Leung
  6. Tom Hagley
  7. Fumi Kubo
  8. Herwig Baier
  9. Isaac H Bianco
  10. Claire Wyart
(2020)
A calibrated optogenetic toolbox of stable zebrafish opsin lines
eLife 9:e54937.
https://doi.org/10.7554/eLife.54937

Share this article

https://doi.org/10.7554/eLife.54937

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.