Limited Dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction

  1. Wei Kan
  2. Michael D Enos
  3. Elgin Korkmazhan
  4. Stefan Muennich
  5. Dong-Hua Chen
  6. Melissa V Gammons
  7. Mansi Vasishtha
  8. Mariann Bienz
  9. Alexander R Dunn
  10. Georgios Skiniotis
  11. William I Weis  Is a corresponding author
  1. Stanford University, United States
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. Medical Research Council, United Kingdom
  4. Stanford University School of Medicine, United States

Abstract

In Wnt/β-catenin signaling, the transcriptional coactivator β-catenin is regulated by its phosphorylation in a complex that includes the scaffold protein Axin and associated kinases. Wnt binding to its coreceptors activates the cytosolic effector Dishevelled (Dvl), leading to the recruitment of Axin and the inhibition of β-catenin phosphorylation. This process requires interaction of homologous DIX domains present in Dvl and Axin, but is mechanistically undefined. We show that Dvl DIX forms antiparallel, double-stranded oligomers in vitro, and that Dvl in cells forms oligomers typically <10 molecules at endogenous expression levels. Axin DIX (DAX) forms small single-stranded oligomers, but its self-association is stronger than that of DIX. DAX caps the ends of DIX oligomers, such that a DIX oligomer has at most four DAX binding sites. The relative affinities and stoichiometry of the DIX-DAX interaction provide a mechanism for efficient inhibition of β-catenin phosphorylation upon Axin recruitment to the Wnt receptor complex.

Data availability

Coordinates of the Dvl2 DIX filament have been deposited in the PDB, code 6VCC, and the cryo-EM map in the EMDB, code EMD-21148

The following data sets were generated

Article and author information

Author details

  1. Wei Kan

    Structural Biology and Molecular & Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6830-6714
  2. Michael D Enos

    Department of Structural Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Elgin Korkmazhan

    Chemical Engineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6872-9952
  4. Stefan Muennich

    Structural Biology and Molecular & Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1355-737X
  5. Dong-Hua Chen

    Structural Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Melissa V Gammons

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Mansi Vasishtha

    Structural Biology and Molecular & Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Mariann Bienz

    MRC Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7170-8706
  9. Alexander R Dunn

    Department of Chemical Engineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6096-4600
  10. Georgios Skiniotis

    Biological Chemistry, Stanford University, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  11. William I Weis

    Departments of Structural Biology and of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    weis@stanford.edu
    Competing interests
    William I Weis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5583-6150

Funding

National Institute of General Medical Sciences (GM119156)

  • William I Weis

National Institute of General Medical Sciences (GM130332)

  • Alexander R Dunn

National Institute of General Medical Sciences (T32 GM007276)

  • Michael D Enos

Pew Charitable Trusts (Pew Scholars Innovation Award 00031375)

  • Georgios Skiniotis
  • William I Weis

Stanford Bio-X Graduate Fellowship (Graduate fellowship)

  • Elgin Korkmazhan

Fritz Thyssen Foundation (Postdoctoral Fellowship)

  • Stefan Muennich

HHMI Faculty Scholar (N/A)

  • Alexander R Dunn

Medical Research Council (MC_U105192713)

  • Mariann Bienz

Cancer Research UK (C7379/A15291)

  • Mariann Bienz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Kan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,440
    views
  • 517
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Kan
  2. Michael D Enos
  3. Elgin Korkmazhan
  4. Stefan Muennich
  5. Dong-Hua Chen
  6. Melissa V Gammons
  7. Mansi Vasishtha
  8. Mariann Bienz
  9. Alexander R Dunn
  10. Georgios Skiniotis
  11. William I Weis
(2020)
Limited Dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction
eLife 9:e55015.
https://doi.org/10.7554/eLife.55015

Share this article

https://doi.org/10.7554/eLife.55015

Further reading

    1. Structural Biology and Molecular Biophysics
    Gabriel E Jara, Francesco Pontiggia ... Dorothee Kern
    Research Article

    Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.

    1. Structural Biology and Molecular Biophysics
    Joseph Clayton, Aarion Romany ... Jana Shen
    Research Article

    Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.