Limited Dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction
Abstract
In Wnt/β-catenin signaling, the transcriptional coactivator β-catenin is regulated by its phosphorylation in a complex that includes the scaffold protein Axin and associated kinases. Wnt binding to its coreceptors activates the cytosolic effector Dishevelled (Dvl), leading to the recruitment of Axin and the inhibition of β-catenin phosphorylation. This process requires interaction of homologous DIX domains present in Dvl and Axin, but is mechanistically undefined. We show that Dvl DIX forms antiparallel, double-stranded oligomers in vitro, and that Dvl in cells forms oligomers typically <10 molecules at endogenous expression levels. Axin DIX (DAX) forms small single-stranded oligomers, but its self-association is stronger than that of DIX. DAX caps the ends of DIX oligomers, such that a DIX oligomer has at most four DAX binding sites. The relative affinities and stoichiometry of the DIX-DAX interaction provide a mechanism for efficient inhibition of β-catenin phosphorylation upon Axin recruitment to the Wnt receptor complex.
Data availability
Coordinates of the Dvl2 DIX filament have been deposited in the PDB, code 6VCC, and the cryo-EM map in the EMDB, code EMD-21148
Article and author information
Author details
Funding
National Institute of General Medical Sciences (GM119156)
- William I Weis
National Institute of General Medical Sciences (GM130332)
- Alexander R Dunn
National Institute of General Medical Sciences (T32 GM007276)
- Michael D Enos
Pew Charitable Trusts (Pew Scholars Innovation Award 00031375)
- Georgios Skiniotis
- William I Weis
Stanford Bio-X Graduate Fellowship (Graduate fellowship)
- Elgin Korkmazhan
Fritz Thyssen Foundation (Postdoctoral Fellowship)
- Stefan Muennich
HHMI Faculty Scholar (N/A)
- Alexander R Dunn
Medical Research Council (MC_U105192713)
- Mariann Bienz
Cancer Research UK (C7379/A15291)
- Mariann Bienz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Mingjie Zhang, Hong Kong University of Science and Technology, Hong Kong
Publication history
- Received: January 9, 2020
- Accepted: April 15, 2020
- Accepted Manuscript published: April 16, 2020 (version 1)
- Version of Record published: May 5, 2020 (version 2)
Copyright
© 2020, Kan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,209
- Page views
-
- 399
- Downloads
-
- 19
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Cleavage of membrane proteins in the lipid bilayer by intramembrane proteases is crucial for health and disease. Although different lipid environments can potently modulate their activity, how this is linked to their structural dynamics is unclear. Here we show that the carboxy-peptidase-like activity of the archaeal intramembrane protease PSH, a homolog of the Alzheimer's disease-associated presenilin/γ-secretase is impaired in micelles and promoted in a lipid bilayer. Comparative molecular dynamics simulations revealed that important elements for substrate binding such as transmembrane domain 6a of PSH are more labile in micelles and stabilized in the lipid bilayer. Moreover, consistent with an enhanced interaction of PSH with a transition-state analog inhibitor, the bilayer promoted the formation of the enzyme´s catalytic active site geometry. Our data indicate that the lipid environment of an intramembrane protease plays a critical role in structural stabilization and active site arrangement of the enzyme-substrate complex thereby promoting intramembrane proteolysis.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain – notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction.