Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation

  1. Sonia Stefanovic
  2. Brigitte Laforest
  3. Jean-Pierre Desvignes
  4. Fabienne Lescroart
  5. Laurent Argiro
  6. Corinne Maurel-Zaffran
  7. David Salgado
  8. Elise Plaindoux
  9. Christopher De Bono
  10. Kristijan Pazur
  11. Magali Théveniau-Ruissy
  12. Christophe Béroud
  13. Michel Puceat
  14. Anthony Gavalas
  15. Robert G Kelly
  16. Stephane Zaffran  Is a corresponding author
  1. Aix Marseille University, France
  2. University of Chicago, United States
  3. Aix-Marseille Université, France
  4. CNRS-AMU, France
  5. Technische Universität Dresden, Germany

Abstract

Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3.

Article and author information

Author details

  1. Sonia Stefanovic

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Brigitte Laforest

    Department of Pediatrics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6919-8922
  3. Jean-Pierre Desvignes

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabienne Lescroart

    INSERM, MMG, U1251, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4942-7921
  5. Laurent Argiro

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Corinne Maurel-Zaffran

    IBDM, CNRS-AMU, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. David Salgado

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Elise Plaindoux

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher De Bono

    IBDM, CNRS UMR7288, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Kristijan Pazur

    Paul Langerhans Institute Dresden of Helmholtz Centre Munich, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Magali Théveniau-Ruissy

    INSERM U1251 Marseille Medical Genetics, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7346-7096
  12. Christophe Béroud

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Michel Puceat

    INSERM U1251 Marseille Medical Genetics, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9055-7563
  14. Anthony Gavalas

    Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Robert G Kelly

    CNRS UMR 7288, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Stephane Zaffran

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    For correspondence
    stephane.zaffran@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0811-418X

Funding

Agence Nationale de la Recherche (ANR-13-BSV2-0003)

  • Michel Puceat
  • Robert G Kelly
  • Stephane Zaffran

Agence Nationale de la Recherche (ANR-18-CE13-0011)

  • Robert G Kelly
  • Stephane Zaffran

Fondation Lefoulon Delalande

  • Sonia Stefanovic
  • Fabienne Lescroart

Association Française contre les Myopathies (MNH-Decrypt)

  • Stephane Zaffran

Fondation pour la Recherche Médicale

  • Brigitte Laforest

Fondation pour la Recherche Médicale (DEQ20150331717)

  • Robert G Kelly

European Commission (H2020-MSCA-IF-2014)

  • Sonia Stefanovic

Fondation Leducq (Research Equipment and Technological Platform Awards)

  • Michel Puceat
  • Robert G Kelly
  • Stephane Zaffran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were carried out under protocols approved by a national appointed ethical committee for animal experimentation (Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche; Authorization N{degree sign}32-08102012).

Reviewing Editor

  1. Richard P Harvey, Victor Chang Cardiac Research Institute, Australia

Publication history

  1. Received: January 13, 2020
  2. Accepted: August 16, 2020
  3. Accepted Manuscript published: August 17, 2020 (version 1)
  4. Version of Record published: September 1, 2020 (version 2)

Copyright

© 2020, Stefanovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,073
    Page views
  • 302
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonia Stefanovic
  2. Brigitte Laforest
  3. Jean-Pierre Desvignes
  4. Fabienne Lescroart
  5. Laurent Argiro
  6. Corinne Maurel-Zaffran
  7. David Salgado
  8. Elise Plaindoux
  9. Christopher De Bono
  10. Kristijan Pazur
  11. Magali Théveniau-Ruissy
  12. Christophe Béroud
  13. Michel Puceat
  14. Anthony Gavalas
  15. Robert G Kelly
  16. Stephane Zaffran
(2020)
Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation
eLife 9:e55124.
https://doi.org/10.7554/eLife.55124
  1. Further reading

Further reading

    1. Developmental Biology
    2. Neuroscience
    Anadika R Prasad, Inês Lago-Baldaia ... Vilaiwan M Fernandes
    Research Article Updated

    Neural circuit formation and function require that diverse neurons are specified in appropriate numbers. Known strategies for controlling neuronal numbers involve regulating either cell proliferation or survival. We used the Drosophila visual system to probe how neuronal numbers are set. Photoreceptors from the eye-disc induce their target field, the lamina, such that for every unit eye there is a corresponding lamina unit (column). Although each column initially contains ~6 post-mitotic lamina precursors, only 5 differentiate into neurons, called L1-L5; the ‘extra’ precursor, which is invariantly positioned above the L5 neuron in each column, undergoes apoptosis. Here, we showed that a glial population called the outer chiasm giant glia (xgO), which resides below the lamina, secretes multiple ligands to induce L5 differentiation in response to epidermal growth factor (EGF) from photoreceptors. By forcing neuronal differentiation in the lamina, we uncovered that though fated to die, the ‘extra’ precursor is specified as an L5. Therefore, two precursors are specified as L5s but only one differentiates during normal development. We found that the row of precursors nearest to xgO differentiate into L5s and, in turn, antagonise differentiation signalling to prevent the ‘extra’ precursors from differentiating, resulting in their death. Thus, an intricate interplay of glial signals and feedback from differentiating neurons defines an invariant and stereotyped pattern of neuronal differentiation and programmed cell death to ensure that lamina columns each contain exactly one L5 neuron.

    1. Developmental Biology
    Hannes Preiß, Anna C Kögler ... Patrick Müller
    Research Article

    During vertebrate embryogenesis, the germ layers are patterned by secreted Nodal signals. In the classical model, Nodals elicit signaling by binding to a complex comprising Type I/II Activin receptors (Acvr) and the co-receptor Tdgf1. However, it is currently unclear whether receptor binding can also affect the distribution of Nodals themselves through the embryo, and it is unknown which of the putative Acvr paralogs mediate Nodal signaling in zebrafish. Here, we characterize three Type I (Acvr1) and four Type II (Acvr2) homologs and show that - except for Acvr1c - all receptor-encoding transcripts are maternally deposited and present during zebrafish embryogenesis. We generated mutants and used them together with combinatorial morpholino knockdown and CRISPR F0 knockout (KO) approaches to assess compound loss-of-function phenotypes. We discovered that the Acvr2 homologs function partly redundantly and partially independently of Nodal to pattern the early zebrafish embryo, whereas the Type I receptors Acvr1b-a and Acvr1b-b redundantly act as major mediators of Nodal signaling. By combining quantitative analyses with expression manipulations, we found that feedback-regulated Type I receptors and co-receptors can directly influence the diffusion and distribution of Nodals, providing a mechanism for the spatial restriction of Nodal signaling during germ layer patterning.