Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation

Abstract

Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3.

Article and author information

Author details

  1. Sonia Stefanovic

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Brigitte Laforest

    Department of Pediatrics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6919-8922
  3. Jean-Pierre Desvignes

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabienne Lescroart

    INSERM, MMG, U1251, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4942-7921
  5. Laurent Argiro

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Corinne Maurel-Zaffran

    IBDM, CNRS-AMU, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. David Salgado

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Elise Plaindoux

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher De Bono

    IBDM, CNRS UMR7288, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Kristijan Pazur

    Paul Langerhans Institute Dresden of Helmholtz Centre Munich, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Magali Théveniau-Ruissy

    INSERM U1251 Marseille Medical Genetics, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7346-7096
  12. Christophe Béroud

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Michel Puceat

    INSERM U1251 Marseille Medical Genetics, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9055-7563
  14. Anthony Gavalas

    Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Robert G Kelly

    CNRS UMR 7288, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Stephane Zaffran

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    For correspondence
    stephane.zaffran@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0811-418X

Funding

Agence Nationale de la Recherche (ANR-13-BSV2-0003)

  • Michel Puceat
  • Robert G Kelly
  • Stephane Zaffran

Agence Nationale de la Recherche (ANR-18-CE13-0011)

  • Robert G Kelly
  • Stephane Zaffran

Fondation Lefoulon Delalande

  • Sonia Stefanovic
  • Fabienne Lescroart

Association Française contre les Myopathies (MNH-Decrypt)

  • Stephane Zaffran

Fondation pour la Recherche Médicale

  • Brigitte Laforest

Fondation pour la Recherche Médicale (DEQ20150331717)

  • Robert G Kelly

European Commission (H2020-MSCA-IF-2014)

  • Sonia Stefanovic

Fondation Leducq (Research Equipment and Technological Platform Awards)

  • Michel Puceat
  • Robert G Kelly
  • Stephane Zaffran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were carried out under protocols approved by a national appointed ethical committee for animal experimentation (Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche; Authorization N{degree sign}32-08102012).

Copyright

© 2020, Stefanovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,950
    views
  • 387
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonia Stefanovic
  2. Brigitte Laforest
  3. Jean-Pierre Desvignes
  4. Fabienne Lescroart
  5. Laurent Argiro
  6. Corinne Maurel-Zaffran
  7. David Salgado
  8. Elise Plaindoux
  9. Christopher De Bono
  10. Kristijan Pazur
  11. Magali Théveniau-Ruissy
  12. Christophe Béroud
  13. Michel Puceat
  14. Anthony Gavalas
  15. Robert G Kelly
  16. Stephane Zaffran
(2020)
Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation
eLife 9:e55124.
https://doi.org/10.7554/eLife.55124

Share this article

https://doi.org/10.7554/eLife.55124

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.