Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons

  1. Amira Hassan
  2. Pablo Araguas Rodriguez
  3. Stefan K Heidmann
  4. Emma L Walmsley
  5. Gabriel N Aughey  Is a corresponding author
  6. Tony D Southall  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Bayreuth, Germany

Abstract

Condensin complexes are essential for mitotic chromosome assembly and segregation during cell divisions, however, little is known about their functions in post-mitotic cells. Here we report a role for the condensin I subunit Cap-G in Drosophila neurons. We show that, despite not requiring condensin for mitotic chromosome compaction, post-mitotic neurons express Cap-G. Knockdown of Cap-G specifically in neurons (from their birth onwards) results in developmental arrest, behavioural defects, and dramatic gene expression changes, including reduced expression of a subset of neuronal genes and aberrant expression of genes that are not normally expressed in the developing brain. Knockdown of Cap-G in mature neurons results in similar phenotypes but to a lesser degree. Furthermore, we see dynamic binding of Cap-G at distinct loci in progenitor cells and differentiated neurons. Therefore, Cap-G is essential for proper gene expression in neurons and plays an important role during the early stages of neuronal development.

Data availability

All raw sequence files and processed files have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE142112).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Amira Hassan

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Pablo Araguas Rodriguez

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Stefan K Heidmann

    Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Emma L Walmsley

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3785-075X
  5. Gabriel N Aughey

    Department of Life Sciences, Imperial College London, London, United Kingdom
    For correspondence
    g.aughey@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5610-9345
  6. Tony D Southall

    Department of Life Sciences, Imperial College London, London, United Kingdom
    For correspondence
    t.southall@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8645-4198

Funding

Wellcome (104567/Z/14/Z)

  • Tony D Southall

Biotechnology and Biological Sciences Research Council (BB/P017924/1)

  • Gabriel N Aughey
  • Tony D Southall

Biotechnology and Biological Sciences Research Council (BB/M011178/1)

  • Amira Hassan

Deutsche Forschungsgemeinschaft (HE2354/23-2)

  • Stefan K Heidmann

Deutsche Forschungsgemeinschaft (HE2354/4-1)

  • Stefan K Heidmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne E West, Duke University School of Medicine, United States

Publication history

  1. Received: January 14, 2020
  2. Accepted: April 6, 2020
  3. Accepted Manuscript published: April 7, 2020 (version 1)
  4. Version of Record published: April 20, 2020 (version 2)

Copyright

© 2020, Hassan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,497
    Page views
  • 171
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amira Hassan
  2. Pablo Araguas Rodriguez
  3. Stefan K Heidmann
  4. Emma L Walmsley
  5. Gabriel N Aughey
  6. Tony D Southall
(2020)
Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons
eLife 9:e55159.
https://doi.org/10.7554/eLife.55159

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Francisco Xavier Galdos, Carissa Lee ... Sean Wu
    Research Article

    During mammalian development, the left and right ventricles arise from early populations of cardiac progenitors known as the first and second heart fields, respectively. While these populations have been extensively studied in non-human model systems, their identification and study in vivo human tissues have been limited due to the ethical and technical limitations of accessing gastrulation stage human embryos. Human induced pluripotent stem cells (hiPSCs) present an exciting alternative for modeling early human embryogenesis due to their well-established ability to differentiate into all embryonic germ layers. Here, we describe the development of a TBX5/MYL2 lineage tracing reporter system that allows for the identification of FHF- progenitors and their descendants including left ventricular cardiomyocytes. Furthermore, using single cell RNA sequencing (scRNA-seq) with oligonucleotide-based sample multiplexing, we extensively profiled differentiating hiPSCs across 12 timepoints in two independent iPSC lines. Surprisingly, our reporter system and scRNA-seq analysis revealed a predominance of FHF differentiation using the small molecule Wnt-based 2D differentiation protocol. We compared this data with existing murine and 3D cardiac organoid scRNA-seq data and confirmed the dominance of left ventricular cardiomyocytes (>90%) in our hiPSC-derived progeny. Together, our work provides the scientific community with a powerful new genetic lineage tracing approach as well as a single cell transcriptomic atlas of hiPSCs undergoing cardiac differentiation.

    1. Developmental Biology
    2. Neuroscience
    Simone Rey, Henrike Ohm ... Christian Klämbt
    Research Article

    Neuronal information conductance often involves the transmission of action potentials. The spreading of action potentials along the axonal process of a neuron is based on three physical parameters: The axial resistance of the axon, the axonal insulation by glial membranes, and the positioning of voltage-gated ion channels. In vertebrates, myelin and channel clustering allow fast saltatory conductance. Here we show that in Drosophila melanogaster voltage-gated sodium and potassium channels, Para and Shal, co-localize and cluster in an area resembling the axon initial segment. The local enrichment of Para but not of Shal localization depends on the presence of peripheral wrapping glial cells. In larvae, relatively low levels of Para channels are needed to allow proper signal transduction and nerves are simply wrapped by glial cells. In adults, the concentration of Para increases and is prominently found at the axon initial segment of motor neurons. Concomitantly, these axon domains are covered by a mesh of glial processes forming a lacunar structure that possibly serves as an ion reservoir. Directly flanking this domain glial processes forming the lacunar area appear to collapse and closely apposed stacks of glial cell processes can be detected, resembling a myelin-like insulation. Thus, Drosophila development may reflect the evolution of myelin which forms in response to increased levels of clustered voltage-gated ion channels.