Ant collective cognition allows for efficient navigation through disordered environments

  1. Aviram Gelblum
  2. Ehud Fonio
  3. Yoav Rodeh
  4. Amos Korman  Is a corresponding author
  5. Ofer Feinerman  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Ort Braude College, Israel
  3. CNRS and University of Paris, France

Abstract

The cognitive abilities of biological organisms only make sense in the context of their environment. Here, we study longhorn crazy ant collective navigation skills within the context of a semi-natural, randomized environment. Mapping this biological setting into the 'Ant-in-a-Labyrinth' framework which studies physical transport through disordered media allows us to formulate precise links between the statistics of environmental challenges and the ants' collective navigation abilities. We show that, in this environment, the ants use their numbers to collectively extend their sensing range. Although this extension is moderate, it nevertheless allows for extremely fast traversal times that overshadow known physical solutions to the 'Ant-in-a-Labyrinth' problem. To explain this large payoff, we use percolation theory and prove that whenever the labyrinth is solvable, a logarithmically small sensing range suffices for extreme speedup. Overall, our work demonstrates the potential advantages of group living and collective cognition in increasing a species' habitable range.

Data availability

Full raw data of both the labyrinths and the ants collective trajectories through these labyrinths were uploaded with this submission.

Article and author information

Author details

  1. Aviram Gelblum

    Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Ehud Fonio

    Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoav Rodeh

    Department of Software Engineering, Ort Braude College, Karmiel, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Amos Korman

    The Research Institute on the Foundations of Computer Science (IRIF), CNRS and University of Paris, Paris, France
    For correspondence
    amos.korman@irif.fr
    Competing interests
    The authors declare that no competing interests exist.
  5. Ofer Feinerman

    Department of Physics of Complex Systems, Weizmann Institute of Science, Rehobot, Israel
    For correspondence
    ofer.feinerman@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4145-0238

Funding

Horizon 2020 Framework Programme (770964)

  • Ofer Feinerman

Horizon 2020 Framework Programme (648032)

  • Amos Korman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Gelblum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,157
    views
  • 588
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aviram Gelblum
  2. Ehud Fonio
  3. Yoav Rodeh
  4. Amos Korman
  5. Ofer Feinerman
(2020)
Ant collective cognition allows for efficient navigation through disordered environments
eLife 9:e55195.
https://doi.org/10.7554/eLife.55195

Share this article

https://doi.org/10.7554/eLife.55195

Further reading

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.