Different neuronal populations mediate inflammatory pain analgesia by exogenous and endogenous opioids

Abstract

Mu-opioid receptors (MORs) are crucial for analgesia by both exogenous and endogenous opioids. However, the distinct mechanisms underlying these two types of opioid analgesia remains largely unknown. Here, we demonstrate that analgesic effects of exogenous and endogenous opioids on inflammatory pain are mediated by MORs expressed in distinct subpopulations of neurons in mouse. We found that the exogenous opioid-induced analgesia of inflammatory pain is mediated by MORs in Vglut2+ glutamatergic but not GABAergic neurons. In contrast, analgesia by endogenous opioids is mediated by MORs in GABAergic rather than Vglut2+ glutamatergic neurons. Furthermore, MORs expressed at the spinal level is mainly involved in the analgesic effect of morphine in acute pain, but not in endogenous opioid analgesia during chronic inflammatory pain. Thus, our study revealed distinct mechanisms underlying analgesia by exogenous and endogenous opioids, and laid the foundation for further dissecting the circuit mechanism underlying opioid analgesia.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xin-Yan Zhang

    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yan-Nong Dou

    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9096-6284
  3. Lei Yuan

    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Qing Li

    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yan-Jing Zhu

    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Meng Wang

    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yan-Gang Sun

    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    yangang.sun@ion.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0768-7733

Funding

Shanghai Municipal Science and Technology Major Project (2018SHZDZX05)

  • Yan-Gang Sun

Chinese Academy of Sciences (XDB32010200)

  • Yan-Gang Sun

China Postdoctoral Science Foundation (2018M640426)

  • Yan-Nong Dou

Shanghai Postdoctoral Excellence Program (2018038)

  • Yan-Nong Dou

National Natural Science Foundation of China (31825013)

  • Yan-Gang Sun

National Natural Science Foundation of China (31800877)

  • Yan-Nong Dou

National Natural Science Foundation of China (61890952)

  • Yan-Gang Sun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Institute of Neuroscience, CAS. All procedures were approved by the Animal Care and Use Committee of the Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China (Protocol number: NA-005-2019).

Copyright

© 2020, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,232
    views
  • 831
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin-Yan Zhang
  2. Yan-Nong Dou
  3. Lei Yuan
  4. Qing Li
  5. Yan-Jing Zhu
  6. Meng Wang
  7. Yan-Gang Sun
(2020)
Different neuronal populations mediate inflammatory pain analgesia by exogenous and endogenous opioids
eLife 9:e55289.
https://doi.org/10.7554/eLife.55289

Share this article

https://doi.org/10.7554/eLife.55289

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.