Different methods of fear reduction are supported by distinct cortical substrates

  1. Belinda PP Lay
  2. Audrey A Pitaru
  3. Nathan Boulianne
  4. Guillem R Esber
  5. Mihaela D Iordanova  Is a corresponding author
  1. Concordia University, Canada
  2. Brooklyn College of the City University of New York, United States

Abstract

Understanding how learned fear can be reduced is at the heart of treatments for anxiety disorders. Tremendous progress has been made in this regard through extinction training in which the aversive outcome is omitted. However, current progress almost entirely rests on this single paradigm, resulting in a very specialized knowledgebase at the behavioural and neural level of analysis. Here, we used a dual-paradigm approach to show that different methods that lead to reduction in learned fear in rats are dissociated in the cortex. We report that the infralimbic cortex has a very specific role in fear reduction that depends on the omission of aversive events but not on overexpectation. The orbitofrontal cortex, a structure generally overlooked in fear, is critical for downregulating fear when novel predictions about upcoming aversive events are generated, such as when fear is inflated or overexpected, but less so when an expected aversive event is omitted.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Belinda PP Lay

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  2. Audrey A Pitaru

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  3. Nathan Boulianne

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  4. Guillem R Esber

    Department of Psychology, Brooklyn College of the City University of New York, New York, United States
    Competing interests
    No competing interests declared.
  5. Mihaela D Iordanova

    Department of Psychology, Concordia University, Montreal, Canada
    For correspondence
    mihaela.iordanova@concordia.ca
    Competing interests
    Mihaela D Iordanova, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6232-448X

Funding

Fonds de Recherche du Québec - Nature et Technologies (2017-NC-198182)

  • Mihaela D Iordanova

Canadian Institutes of Health Research (Project Grant)

  • Mihaela D Iordanova

Brain and Behavior Research Foundation (NARSAD grant)

  • Mihaela D Iordanova

Canada Research Chairs

  • Mihaela D Iordanova

Fonds de Recherche du Québec - Santé

  • Belinda PP Lay

Natural Sciences and Engineering Research Council of Canada

  • Nathan Boulianne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were in accordance with the approval granted by the Canadian Council on Animal Care and the Concordia University Animal Care Committee.

Reviewing Editor

  1. Mathieu Wolff, CNRS, University of Bordeaux, France

Publication history

  1. Received: January 20, 2020
  2. Accepted: June 25, 2020
  3. Accepted Manuscript published: June 26, 2020 (version 1)
  4. Version of Record published: July 8, 2020 (version 2)

Copyright

© 2020, Lay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,337
    Page views
  • 223
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Belinda PP Lay
  2. Audrey A Pitaru
  3. Nathan Boulianne
  4. Guillem R Esber
  5. Mihaela D Iordanova
(2020)
Different methods of fear reduction are supported by distinct cortical substrates
eLife 9:e55294.
https://doi.org/10.7554/eLife.55294

Further reading

    1. Neuroscience
    Jessica H Kim et al.
    Research Article Updated

    Food intake behavior is regulated by a network of appetite-inducing and appetite-suppressing neuronal populations throughout the brain. The parasubthalamic nucleus (PSTN), a relatively unexplored population of neurons in the posterior hypothalamus, has been hypothesized to regulate appetite due to its connectivity with other anorexigenic neuronal populations and because these neurons express Fos, a marker of neuronal activation, following a meal. However, the individual cell types that make up the PSTN are not well characterized, nor are their functional roles in food intake behavior. Here, we identify and distinguish between two discrete PSTN subpopulations, those that express tachykinin-1 (PSTNTac1 neurons) and those that express corticotropin-releasing hormone (PSTNCRH neurons), and use a panel of genetically encoded tools in mice to show that PSTNTac1 neurons play an important role in appetite suppression. Both subpopulations increase activity following a meal and in response to administration of the anorexigenic hormones amylin, cholecystokinin (CCK), and peptide YY (PYY). Interestingly, chemogenetic inhibition of PSTNTac1, but not PSTNCRH neurons, reduces the appetite-suppressing effects of these hormones. Consistently, optogenetic and chemogenetic stimulation of PSTNTac1 neurons, but not PSTNCRH neurons, reduces food intake in hungry mice. PSTNTac1 and PSTNCRH neurons project to distinct downstream brain regions, and stimulation of PSTNTac1 projections to individual anorexigenic populations reduces food consumption. Taken together, these results reveal the functional properties and projection patterns of distinct PSTN cell types and demonstrate an anorexigenic role for PSTNTac1 neurons in the hormonal and central regulation of appetite.

    1. Neuroscience
    Nahoko Kuga et al.
    Research Article

    The medial prefrontal cortex and amygdala are involved in the regulation of social behavior and associated with psychiatric diseases but their detailed neurophysiological mechanisms at a network level remain unclear. We recorded local field potentials (LFPs) from the dorsal medial prefrontal cortex (dmPFC) and basolateral amygdala (BLA) while male mice engaged on social behavior. We found that in wild-type mice, both the dmPFC and BLA increased 4–7 Hz oscillation power and decreased 30–60 Hz power when they needed to attend to another target mouse. In mouse models with reduced social interactions, dmPFC 4–7 Hz power further increased especially when they exhibited social avoidance behavior. In contrast, dmPFC and BLA decreased 4–7 Hz power when wild-type mice socially approached a target mouse. Frequency-specific optogenetic manipulations replicating social approach-related LFP patterns restored social interaction behavior in socially deficient mice. These results demonstrate a neurophysiological substrate of the prefrontal cortex and amygdala related to social behavior and provide a unified pathophysiological understanding of neuronal population dynamics underlying social behavioral deficits.