Different methods of fear reduction are supported by distinct cortical substrates

  1. Belinda PP Lay
  2. Audrey A Pitaru
  3. Nathan Boulianne
  4. Guillem R Esber
  5. Mihaela D Iordanova  Is a corresponding author
  1. Concordia University, Canada
  2. Brooklyn College of the City University of New York, United States

Abstract

Understanding how learned fear can be reduced is at the heart of treatments for anxiety disorders. Tremendous progress has been made in this regard through extinction training in which the aversive outcome is omitted. However, current progress almost entirely rests on this single paradigm, resulting in a very specialized knowledgebase at the behavioural and neural level of analysis. Here, we used a dual-paradigm approach to show that different methods that lead to reduction in learned fear in rats are dissociated in the cortex. We report that the infralimbic cortex has a very specific role in fear reduction that depends on the omission of aversive events but not on overexpectation. The orbitofrontal cortex, a structure generally overlooked in fear, is critical for downregulating fear when novel predictions about upcoming aversive events are generated, such as when fear is inflated or overexpected, but less so when an expected aversive event is omitted.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Belinda PP Lay

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  2. Audrey A Pitaru

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  3. Nathan Boulianne

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  4. Guillem R Esber

    Department of Psychology, Brooklyn College of the City University of New York, New York, United States
    Competing interests
    No competing interests declared.
  5. Mihaela D Iordanova

    Department of Psychology, Concordia University, Montreal, Canada
    For correspondence
    mihaela.iordanova@concordia.ca
    Competing interests
    Mihaela D Iordanova, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6232-448X

Funding

Fonds de Recherche du Québec - Nature et Technologies (2017-NC-198182)

  • Mihaela D Iordanova

Canadian Institutes of Health Research (Project Grant)

  • Mihaela D Iordanova

Brain and Behavior Research Foundation (NARSAD grant)

  • Mihaela D Iordanova

Canada Research Chairs

  • Mihaela D Iordanova

Fonds de Recherche du Québec - Santé

  • Belinda PP Lay

Natural Sciences and Engineering Research Council of Canada

  • Nathan Boulianne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were in accordance with the approval granted by the Canadian Council on Animal Care and the Concordia University Animal Care Committee.

Copyright

© 2020, Lay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,923
    views
  • 271
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Belinda PP Lay
  2. Audrey A Pitaru
  3. Nathan Boulianne
  4. Guillem R Esber
  5. Mihaela D Iordanova
(2020)
Different methods of fear reduction are supported by distinct cortical substrates
eLife 9:e55294.
https://doi.org/10.7554/eLife.55294

Share this article

https://doi.org/10.7554/eLife.55294

Further reading

    1. Neuroscience
    Larissa Höfling, Klaudia P Szatko ... Thomas Euler
    Research Article

    The retina transforms patterns of light into visual feature representations supporting behaviour. These representations are distributed across various types of retinal ganglion cells (RGCs), whose spatial and temporal tuning properties have been studied extensively in many model organisms, including the mouse. However, it has been difficult to link the potentially nonlinear retinal transformations of natural visual inputs to specific ethological purposes. Here, we discover a nonlinear selectivity to chromatic contrast in an RGC type that allows the detection of changes in visual context. We trained a convolutional neural network (CNN) model on large-scale functional recordings of RGC responses to natural mouse movies, and then used this model to search in silico for stimuli that maximally excite distinct types of RGCs. This procedure predicted centre colour opponency in transient suppressed-by-contrast (tSbC) RGCs, a cell type whose function is being debated. We confirmed experimentally that these cells indeed responded very selectively to Green-OFF, UV-ON contrasts. This type of chromatic contrast was characteristic of transitions from ground to sky in the visual scene, as might be elicited by head or eye movements across the horizon. Because tSbC cells performed best among all RGC types at reliably detecting these transitions, we suggest a role for this RGC type in providing contextual information (i.e. sky or ground) necessary for the selection of appropriate behavioural responses to other stimuli, such as looming objects. Our work showcases how a combination of experiments with natural stimuli and computational modelling allows discovering novel types of stimulus selectivity and identifying their potential ethological relevance.

    1. Neuroscience
    Steven S Hou, Yuya Ikegawa ... Masato Maesako
    Tools and Resources

    γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720–670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential ‘cell non-autonomous’ regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.