Different methods of fear reduction are supported by distinct cortical substrates

  1. Belinda PP Lay
  2. Audrey A Pitaru
  3. Nathan Boulianne
  4. Guillem R Esber
  5. Mihaela D Iordanova  Is a corresponding author
  1. Concordia University, Canada
  2. Brooklyn College of the City University of New York, United States

Abstract

Understanding how learned fear can be reduced is at the heart of treatments for anxiety disorders. Tremendous progress has been made in this regard through extinction training in which the aversive outcome is omitted. However, current progress almost entirely rests on this single paradigm, resulting in a very specialized knowledgebase at the behavioural and neural level of analysis. Here, we used a dual-paradigm approach to show that different methods that lead to reduction in learned fear in rats are dissociated in the cortex. We report that the infralimbic cortex has a very specific role in fear reduction that depends on the omission of aversive events but not on overexpectation. The orbitofrontal cortex, a structure generally overlooked in fear, is critical for downregulating fear when novel predictions about upcoming aversive events are generated, such as when fear is inflated or overexpected, but less so when an expected aversive event is omitted.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Belinda PP Lay

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  2. Audrey A Pitaru

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  3. Nathan Boulianne

    Psychology, Concordia University, Montreal, Canada
    Competing interests
    No competing interests declared.
  4. Guillem R Esber

    Department of Psychology, Brooklyn College of the City University of New York, New York, United States
    Competing interests
    No competing interests declared.
  5. Mihaela D Iordanova

    Department of Psychology, Concordia University, Montreal, Canada
    For correspondence
    mihaela.iordanova@concordia.ca
    Competing interests
    Mihaela D Iordanova, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6232-448X

Funding

Fonds de Recherche du Québec - Nature et Technologies (2017-NC-198182)

  • Mihaela D Iordanova

Canadian Institutes of Health Research (Project Grant)

  • Mihaela D Iordanova

Brain and Behavior Research Foundation (NARSAD grant)

  • Mihaela D Iordanova

Canada Research Chairs

  • Mihaela D Iordanova

Fonds de Recherche du Québec - Santé

  • Belinda PP Lay

Natural Sciences and Engineering Research Council of Canada

  • Nathan Boulianne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were in accordance with the approval granted by the Canadian Council on Animal Care and the Concordia University Animal Care Committee.

Copyright

© 2020, Lay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,908
    views
  • 270
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Belinda PP Lay
  2. Audrey A Pitaru
  3. Nathan Boulianne
  4. Guillem R Esber
  5. Mihaela D Iordanova
(2020)
Different methods of fear reduction are supported by distinct cortical substrates
eLife 9:e55294.
https://doi.org/10.7554/eLife.55294

Share this article

https://doi.org/10.7554/eLife.55294

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.