Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in Lyme arthritis

  1. Heike Danzer
  2. Joachim Glaesner
  3. Anne Baerenwaldt
  4. Carmen Reitinger
  5. Anja Lux
  6. Lukas Heger
  7. Diane Dudziak
  8. Thomas Harrer
  9. André Gessner
  10. Falk Nimmerjahn  Is a corresponding author
  1. Division of Genetics, University of Erlangen-Nuremberg, Germany
  2. University Hospital Regensburg, Germany
  3. University Hospital Basel, Switzerland
  4. University Hospital Erlangen, Germany

Abstract

Pathogen specific antibody responses need to be tightly regulated to generate protective but limit self-reactive immune responses. While loss of humoral tolerance has been associated with microbial infections, the pathways involved in balancing protective versus autoreactive antibody responses in humans are incompletely understood. Studies in classical mouse model systems have provided evidence that balancing of immune responses through inhibitory receptors is an important quality control checkpoint. Genetic differences between inbred mouse models and the outbred human population and allelic receptor variants not present in mice, however, argue for caution when directly translating these findings to the human system. By studying Borrelia burgdorferi infection in humanized mice reconstituted with human hematopoietic stem cells from donors homozygous for a functional or non-functional FcgRIIb allele, we show that the human inhibitory FcgRIIb is a critical checkpoint balancing protective and autoreactive immune responses, linking infection with induction of autoimmunity in the human immune system.

Data availability

All data generated and analysed during the study are included in the manuscript. Source data files can be provided on request.

Article and author information

Author details

  1. Heike Danzer

    Biology, Division of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Joachim Glaesner

    Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne Baerenwaldt

    Biomedicine, University Hospital Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Carmen Reitinger

    Biology, Division of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anja Lux

    Biology, Division of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Lukas Heger

    Dermatology, University Hospital Erlangen, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Diane Dudziak

    Dermatology, University Hospital Erlangen, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Harrer

    Medicine III, University Hospital Erlangen, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. André Gessner

    Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4316-2408
  10. Falk Nimmerjahn

    Departemtn of Biology, Division of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    For correspondence
    falk.nimmerjahn@fau.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5418-316X

Funding

Deutsche Forschungsgemeinschaft (TRR130-P13)

  • Falk Nimmerjahn

Deutsche Forschungsgemeinschaft (FOR 2886)

  • Falk Nimmerjahn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in strict accordance to the rules and regulations of the German animal welfare law. All animal experiments were approved by the government of lower Franconia (Permit Numbers: 2532-2-469 and 2532.2-817-11).

Copyright

© 2020, Danzer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,055
    views
  • 198
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heike Danzer
  2. Joachim Glaesner
  3. Anne Baerenwaldt
  4. Carmen Reitinger
  5. Anja Lux
  6. Lukas Heger
  7. Diane Dudziak
  8. Thomas Harrer
  9. André Gessner
  10. Falk Nimmerjahn
(2020)
Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in Lyme arthritis
eLife 9:e55319.
https://doi.org/10.7554/eLife.55319

Share this article

https://doi.org/10.7554/eLife.55319

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Biochemistry and Chemical Biology
    2. Immunology and Inflammation
    Pavla Nedbalová, Nikola Kaislerova ... Tomáš Doležal
    Research Article

    During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.