Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in Lyme arthritis

  1. Heike Danzer
  2. Joachim Glaesner
  3. Anne Baerenwaldt
  4. Carmen Reitinger
  5. Anja Lux
  6. Lukas Heger
  7. Diane Dudziak
  8. Thomas Harrer
  9. André Gessner
  10. Falk Nimmerjahn  Is a corresponding author
  1. Division of Genetics, University of Erlangen-Nuremberg, Germany
  2. University Hospital Regensburg, Germany
  3. University Hospital Basel, Switzerland
  4. University Hospital Erlangen, Germany

Abstract

Pathogen specific antibody responses need to be tightly regulated to generate protective but limit self-reactive immune responses. While loss of humoral tolerance has been associated with microbial infections, the pathways involved in balancing protective versus autoreactive antibody responses in humans are incompletely understood. Studies in classical mouse model systems have provided evidence that balancing of immune responses through inhibitory receptors is an important quality control checkpoint. Genetic differences between inbred mouse models and the outbred human population and allelic receptor variants not present in mice, however, argue for caution when directly translating these findings to the human system. By studying Borrelia burgdorferi infection in humanized mice reconstituted with human hematopoietic stem cells from donors homozygous for a functional or non-functional FcgRIIb allele, we show that the human inhibitory FcgRIIb is a critical checkpoint balancing protective and autoreactive immune responses, linking infection with induction of autoimmunity in the human immune system.

Data availability

All data generated and analysed during the study are included in the manuscript. Source data files can be provided on request.

Article and author information

Author details

  1. Heike Danzer

    Biology, Division of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Joachim Glaesner

    Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne Baerenwaldt

    Biomedicine, University Hospital Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Carmen Reitinger

    Biology, Division of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anja Lux

    Biology, Division of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Lukas Heger

    Dermatology, University Hospital Erlangen, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Diane Dudziak

    Dermatology, University Hospital Erlangen, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Harrer

    Medicine III, University Hospital Erlangen, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. André Gessner

    Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4316-2408
  10. Falk Nimmerjahn

    Departemtn of Biology, Division of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    For correspondence
    falk.nimmerjahn@fau.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5418-316X

Funding

Deutsche Forschungsgemeinschaft (TRR130-P13)

  • Falk Nimmerjahn

Deutsche Forschungsgemeinschaft (FOR 2886)

  • Falk Nimmerjahn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in strict accordance to the rules and regulations of the German animal welfare law. All animal experiments were approved by the government of lower Franconia (Permit Numbers: 2532-2-469 and 2532.2-817-11).

Reviewing Editor

  1. Tomohiro Kurosaki, Osaka University, Japan

Version history

  1. Received: January 20, 2020
  2. Accepted: July 2, 2020
  3. Accepted Manuscript published: July 2, 2020 (version 1)
  4. Version of Record published: August 19, 2020 (version 2)

Copyright

© 2020, Danzer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 954
    Page views
  • 187
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heike Danzer
  2. Joachim Glaesner
  3. Anne Baerenwaldt
  4. Carmen Reitinger
  5. Anja Lux
  6. Lukas Heger
  7. Diane Dudziak
  8. Thomas Harrer
  9. André Gessner
  10. Falk Nimmerjahn
(2020)
Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in Lyme arthritis
eLife 9:e55319.
https://doi.org/10.7554/eLife.55319

Further reading

    1. Immunology and Inflammation
    Atomu Yamaguchi, Noriaki Maeshige ... Hidemi Fujino
    Research Article

    The regulation of inflammatory responses is an important intervention in biological function and macrophages play an essential role during inflammation. Skeletal muscle is the largest organ in the human body and releases various factors which mediate anti-inflammatory/immune modulatory effects. Recently, the roles of extracellular vesicles (EVs) from a large variety of cells are reported. In particular, EVs released from skeletal muscle are attracting attention due to their therapeutic effects on dysfunctional organs and tissues. Also, ultrasound (US) promotes release of EVs from skeletal muscle. In this study, we investigated the output parameters and mechanisms of US-induced EV release enhancement and the potential of US-treated skeletal muscle-derived EVs in the regulation of inflammatory responses in macrophages. High-intensity US (3.0 W/cm2) irradiation increased EV secretion from C2C12 murine muscle cells via elevating intracellular Ca2+ level without negative effects. Moreover, US-induced EVs suppressed expression levels of pro-inflammatory factors in macrophages. miRNA sequencing analysis revealed that miR-206-3p and miR-378a-3p were especially abundant in skeletal myotube-derived EVs. In this study we demonstrated that high-intensity US promotes the release of anti-inflammatory EVs from skeletal myotubes and exert anti-inflammatory effects on macrophages.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Huiyun Lyu, Guohua Yuan ... Yan Shi
    Research Article

    Thymus-originated tTregs and in vitro induced iTregs are subsets of regulatory T cells. While they share the capacity of immune suppression, their stabilities are different, with iTregs losing their phenotype upon stimulation or under inflammatory milieu. Epigenetic differences, particularly methylation state of Foxp3 CNS2 region, provide an explanation for this shift. Whether additional regulations, including cellular signaling, could directly lead phenotypical instability requires further analysis. Here, we show that upon TCR (T cell receptor) triggering, SOCE (store-operated calcium entry) and NFAT (nuclear factor of activated T cells) nuclear translocation are blunted in tTregs, yet fully operational in iTregs, similar to Tconvs. On the other hand, tTregs show minimal changes in their chromatin accessibility upon activation, in contrast to iTregs that demonstrate an activated chromatin state with highly accessible T cell activation and inflammation related genes. Assisted by several cofactors, NFAT driven by strong SOCE signaling in iTregs preferentially binds to primed-opened T helper (TH) genes, resulting in their activation normally observed only in Tconv activation, ultimately leads to instability. Conversely, suppression of SOCE in iTregs can partially rescue their phenotype. Thus, our study adds two new layers, cellular signaling and chromatin accessibility, of understanding in Treg stability, and may provide a path for better clinical applications of Treg cell therapy.