Proximal CA1 20-40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory

  1. Sandra Gattas
  2. Gabriel A Elias
  3. John Janecek
  4. Michael A Yassa  Is a corresponding author
  5. Norbert J Fortin  Is a corresponding author
  1. University of California, Irvine, United States

Abstract

The hippocampus is known to play a critical role in processing information about temporal context. However, it remains unclear how hippocampal oscillations are involved, and how their functional organization is influenced by connectivity gradients. We examined local field potential activity in CA1 as rats performed a nonspatial odor sequence memory task. We found that odor sequence processing epochs were characterized by distinct spectral profiles and proximo-distal CA1 gradients of theta and 20-40 Hz power than track running epochs. We also discovered that 20-40 Hz power was predictive of sequence memory performance, particularly in proximal CA1 and during the plateau of high power observed on trials in which animals had to maintain their decision until instructed to respond. Altogether, these results provide evidence that dynamics of 20-40 Hz power along the CA1 axis are linked to trial-specific processing of nonspatial information critical to order judgements and are consistent with a role for 20-40 Hz power in gating information processing.

Data availability

Data available on Dryad, Data DOI: doi:10.7280/D11960

The following data sets were generated

Article and author information

Author details

  1. Sandra Gattas

    Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1608-1469
  2. Gabriel A Elias

    Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John Janecek

    Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael A Yassa

    Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, United States
    For correspondence
    michael.yassa@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8635-1498
  5. Norbert J Fortin

    Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, United States
    For correspondence
    norbert.fortin@uci.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (CAREER Award IOS-1150292)

  • Norbert J Fortin

National Science Foundation (BCS 1439267)

  • Norbert J Fortin

National Institutes of Health (R01 MH115697)

  • Norbert J Fortin

National Institutes of Health (R01 DC017687)

  • Norbert J Fortin

National Institutes of Health (R01 MH102392)

  • Michael A Yassa

National Institutes of Health (R01 AG053555)

  • Michael A Yassa

National Institutes of Health (Training Grant T32 NS45540)

  • Sandra Gattas

National Institutes of Health (Training Grant T32 DC010775)

  • Gabriel A Elias

Whitehall Foundation (2010-05-84)

  • Norbert J Fortin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were conducted in accordance with the guidelines from care and use of laboratory animals published by the National Institutes of Health. All animals were handled according to an approved Institutional Animal Care and Use Committee (IACUC) protocol (Protocol AUP-20-174).

Copyright

© 2022, Gattas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.55528