Aromatic interactions with membrane modulate human BK channel activation

  1. Mahdieh Yazdani
  2. Guohui Zhang
  3. Zhiguang Jia
  4. Jingyi Shi
  5. Jianmin Cui  Is a corresponding author
  6. Jianhan Chen  Is a corresponding author
  1. University of Massachusetts, Amherst, United States
  2. Washington University in St Louis, United States

Abstract

Large-conductance potassium (BK) channels are transmembrane (TM) proteins that can be synergistically and independently activated by membrane voltage and intracellular Ca2+. The only covalent connection between the cytosolic Ca2+ sensing domain and the TM pore and voltage sensing domains is a 15-residue 'C-linker'. To determine the linker’s role in human BK activation, we designed a series of linker sequence scrambling mutants to suppress potential complex interplay of specific interactions with the rest of the protein. The results revealed a surprising sensitivity of BK activation to the linker sequence. Combining atomistic simulations and further mutagenesis experiments, we demonstrated that nonspecific interactions of the linker with membrane alone could directly modulate BK activation. The C-linker thus plays more direct roles in mediating allosteric coupling between BK domains than previously assumed. Our results suggest that covalent linkers could directly modulate TM protein function and should be considered an integral component of the sensing apparatus.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Mahdieh Yazdani

    Chemistry, University of Massachusetts, Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guohui Zhang

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhiguang Jia

    Chemistry, University of Massachusetts, Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jingyi Shi

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianmin Cui

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    For correspondence
    jcui@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Jianhan Chen

    Chemistry; Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, United States
    For correspondence
    jianhanc@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5281-1150

Funding

National Institute of General Medical Sciences (GM114300)

  • Jianhan Chen

National Heart, Lung, and Blood Institute (HL70393)

  • Jianhan Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Yazdani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,445
    views
  • 230
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mahdieh Yazdani
  2. Guohui Zhang
  3. Zhiguang Jia
  4. Jingyi Shi
  5. Jianmin Cui
  6. Jianhan Chen
(2020)
Aromatic interactions with membrane modulate human BK channel activation
eLife 9:e55571.
https://doi.org/10.7554/eLife.55571

Share this article

https://doi.org/10.7554/eLife.55571

Further reading

    1. Structural Biology and Molecular Biophysics
    Chris van Hoorn, Andrew P Carter
    Research Article

    Ciliary rootlets are striated bundles of filaments that connect the base of cilia to internal cellular structures. Rootlets are critical for the sensory and motile functions of cilia. However, the mechanisms underlying these functions remain unknown, in part due to a lack of structural information of rootlet organization. In this study, we obtain 3D reconstructions of membrane-associated and purified rootlets from mouse retina using cryo-electron tomography. We show that flexible protrusions on the rootlet surface, which emanate from the cross-striations, connect to intracellular membranes. In purified rootlets, the striations were classified into amorphous (A)-bands, associated with accumulations on the rootlet surface, and discrete (D)-bands corresponding to punctate lines of density that run through the rootlet. These striations connect a flexible network of longitudinal filaments. Subtomogram averaging suggests the filaments consist of two intertwined coiled coils. The rootlet’s filamentous architecture, with frequent membrane-connecting cross-striations, lends itself well for anchoring large membranes in the cell.

    1. Structural Biology and Molecular Biophysics
    Jian Wu, Nisha A Jonniya ... Susan S Taylor
    Research Article

    Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, local spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.