Aromatic interactions with membrane modulate human BK channel activation

  1. Mahdieh Yazdani
  2. Guohui Zhang
  3. Zhiguang Jia
  4. Jingyi Shi
  5. Jianmin Cui  Is a corresponding author
  6. Jianhan Chen  Is a corresponding author
  1. University of Massachusetts, Amherst, United States
  2. Washington University in St Louis, United States

Abstract

Large-conductance potassium (BK) channels are transmembrane (TM) proteins that can be synergistically and independently activated by membrane voltage and intracellular Ca2+. The only covalent connection between the cytosolic Ca2+ sensing domain and the TM pore and voltage sensing domains is a 15-residue 'C-linker'. To determine the linker’s role in human BK activation, we designed a series of linker sequence scrambling mutants to suppress potential complex interplay of specific interactions with the rest of the protein. The results revealed a surprising sensitivity of BK activation to the linker sequence. Combining atomistic simulations and further mutagenesis experiments, we demonstrated that nonspecific interactions of the linker with membrane alone could directly modulate BK activation. The C-linker thus plays more direct roles in mediating allosteric coupling between BK domains than previously assumed. Our results suggest that covalent linkers could directly modulate TM protein function and should be considered an integral component of the sensing apparatus.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Mahdieh Yazdani

    Chemistry, University of Massachusetts, Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guohui Zhang

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhiguang Jia

    Chemistry, University of Massachusetts, Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jingyi Shi

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianmin Cui

    Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
    For correspondence
    jcui@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Jianhan Chen

    Chemistry; Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, United States
    For correspondence
    jianhanc@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5281-1150

Funding

National Institute of General Medical Sciences (GM114300)

  • Jianhan Chen

National Heart, Lung, and Blood Institute (HL70393)

  • Jianhan Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Yazdani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,430
    views
  • 230
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mahdieh Yazdani
  2. Guohui Zhang
  3. Zhiguang Jia
  4. Jingyi Shi
  5. Jianmin Cui
  6. Jianhan Chen
(2020)
Aromatic interactions with membrane modulate human BK channel activation
eLife 9:e55571.
https://doi.org/10.7554/eLife.55571

Share this article

https://doi.org/10.7554/eLife.55571

Further reading

    1. Structural Biology and Molecular Biophysics
    Augustus J Lowry, Pengfei Liang ... Yang Zhang
    Research Article

    The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure–function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here, we show that single mutations along the transmembrane helix (TM) 4/6 interface allow non-scrambling TCS members to permeate phospholipids. In particular, this study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.

    1. Structural Biology and Molecular Biophysics
    Kate Huffer, Matthew CS Denley ... Kenton J Swartz
    Research Article

    Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1–S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.