A whole-brain connectivity map of mouse insular cortex

  1. Daniel August Gehrlach
  2. Caroline Weiand
  3. Thomas N Gaitanos
  4. Eunjae Cho
  5. Alexandra S Klein
  6. Alexandru A Hennrich
  7. Karl-Klaus Conzelmann
  8. Nadine Gogolla  Is a corresponding author
  1. Max-Planck Institute of Neurobiology, Germany
  2. Max von Pettenkofer-Institute & Gene Center, Germany

Abstract

The insular cortex (IC) plays key roles in emotional and regulatory brain functions and is affected across psychiatric diseases. However, the brain-wide connections of the mouse IC have not been comprehensively mapped. Here we traced the whole-brain inputs and outputs of the mouse IC across its rostro-caudal extent. We employed cell-type specific monosynaptic rabies virus tracings to characterize afferent connections onto either excitatory or inhibitory IC neurons, and adeno-associated viral tracings to label excitatory efferent axons. While the connectivity between the IC and other cortical regions was highly bidirectional, the IC connectivity with subcortical structures was often unidirectional, revealing prominent cortical-to-subcortical or subcortical-to-cortical pathways. The posterior and medial IC exhibited resembling connectivity patterns, while the anterior IC connectivity was distinct, suggesting two major functional compartments. Our results provide insights into the anatomical architecture of the mouse IC and thus a structural basis to guide investigations into its complex functions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided in Supplementary File 2.

Article and author information

Author details

  1. Daniel August Gehrlach

    Neurobiology, Max-Planck Institute of Neurobiology, Planegg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Caroline Weiand

    Neurobiology, Max-Planck Institute of Neurobiology, Planegg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas N Gaitanos

    Neurobiology, Max-Planck Institute of Neurobiology, Planegg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Eunjae Cho

    Neurobiology, Max-Planck Institute of Neurobiology, Planegg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexandra S Klein

    Neurobiology, Max-Planck Institute of Neurobiology, Planegg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandru A Hennrich

    Medical Faculty, Max von Pettenkofer-Institute & Gene Center, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Karl-Klaus Conzelmann

    Medical Faculty, Max von Pettenkofer-Institute & Gene Center, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nadine Gogolla

    Neurobiology, Max-Planck Institute of Neurobiology, Planegg, Germany
    For correspondence
    ngogolla@neuro.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3754-7133

Funding

Max-Planck-Gesellschaft

  • Caroline Weiand
  • Nadine Gogolla

Deutsche Forschungsgemeinschaft (SPP1665)

  • Daniel August Gehrlach
  • Alexandru A Hennrich
  • Karl-Klaus Conzelmann
  • Nadine Gogolla

Horizon 2020 Framework Programme (ERC-2017-STG 758448)

  • Thomas N Gaitanos
  • Nadine Gogolla

Agence Nationale de la Recherche (ANR-17-CE37-0021)

  • Alexandra S Klein
  • Nadine Gogolla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kate M Wassum, University of California, Los Angeles, United States

Ethics

Animal experimentation: All animals were used in accordance with the regulations and under licenses obtained from the government of Upper Bavaria (Animal license AZ: 55.2-1-54-2532-56-2014).

Version history

  1. Received: January 29, 2020
  2. Accepted: September 16, 2020
  3. Accepted Manuscript published: September 17, 2020 (version 1)
  4. Version of Record published: October 6, 2020 (version 2)

Copyright

© 2020, Gehrlach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,331
    views
  • 2,149
    downloads
  • 169
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel August Gehrlach
  2. Caroline Weiand
  3. Thomas N Gaitanos
  4. Eunjae Cho
  5. Alexandra S Klein
  6. Alexandru A Hennrich
  7. Karl-Klaus Conzelmann
  8. Nadine Gogolla
(2020)
A whole-brain connectivity map of mouse insular cortex
eLife 9:e55585.
https://doi.org/10.7554/eLife.55585

Share this article

https://doi.org/10.7554/eLife.55585

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.