Apelin signaling drives vascular endothelial cells towards a pro-angiogenic state

  1. Christian SM Helker  Is a corresponding author
  2. Jean Eberlein
  3. Kerstin Wilhelm
  4. Toshiya Sugino
  5. Julian Malchow
  6. Annika Schuermann
  7. Stefan Baumeister
  8. Hyouk-Bum Kwon
  9. Hans-Martin Maischein
  10. Michael Potente
  11. Wiebke Herzog
  12. Didier YR Stainier  Is a corresponding author
  1. Philipps-University Marburg, Germany
  2. Max Planck Institute for Heart and Lung Research, Germany
  3. University of Muenster, Germany

Abstract

To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, Apelin expression is regulated by Notch signaling, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Christian SM Helker

    Faculty of Biology, Philipps-University Marburg, Marburg, Germany
    For correspondence
    christian.helker@biologie.uni-marburg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0427-5338
  2. Jean Eberlein

    Faculty of Biology, Philipps-University Marburg, Marburg, Germany
    Competing interests
    No competing interests declared.
  3. Kerstin Wilhelm

    Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  4. Toshiya Sugino

    Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6330-7275
  5. Julian Malchow

    Faculty of Biology, Philipps-University Marburg, Marburg, Germany
    Competing interests
    No competing interests declared.
  6. Annika Schuermann

    University of Muenster, Muenster, Germany
    Competing interests
    No competing interests declared.
  7. Stefan Baumeister

    Faculty of Biology, Philipps-University Marburg, Marburg, Germany
    Competing interests
    No competing interests declared.
  8. Hyouk-Bum Kwon

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  9. Hans-Martin Maischein

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  10. Michael Potente

    Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  11. Wiebke Herzog

    University of Muenster, Muenster, Germany
    Competing interests
    No competing interests declared.
  12. Didier YR Stainier

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    Didier.Stainier@mpi-bn.mpg.de
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026

Funding

Deutsche Forschungsgemeinschaft (SFB 834)

  • Didier YR Stainier

North Rhine-Westphalia (return fellowship')

  • Wiebke Herzog

Deutsche Forschungsgemeinschaft (SFB 834)

  • Christian SM Helker

Deutsche Forschungsgemeinschaft (GRK2213)

  • Christian SM Helker

Deutsche Forschungsgemeinschaft (GRK2213)

  • Jean Eberlein

Deutsche Forschungsgemeinschaft (GRK2213)

  • Julian Malchow

Deutsche Forschungsgemeinschaft (HE4585/3-1)

  • Wiebke Herzog

H2020 European Research Council (EMERGE (773047))

  • Michael Potente

Deutsche Forschungsgemeinschaft (EXC 2026)

  • Michael Potente

H2020 European Research Council (AdG project: ZMOD 694455)

  • Didier YR Stainier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Ethics StatementAll zebrafish husbandry was performed under standard conditions, and all experiments were conducted in accordance with institutional (MPG) and national ethical and animal welfare guidelines (Proposal numbers: B2/1017, B2/1041, B2/1218, B2/1138). All procedures conform to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Copyright

© 2020, Helker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,835
    views
  • 692
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christian SM Helker
  2. Jean Eberlein
  3. Kerstin Wilhelm
  4. Toshiya Sugino
  5. Julian Malchow
  6. Annika Schuermann
  7. Stefan Baumeister
  8. Hyouk-Bum Kwon
  9. Hans-Martin Maischein
  10. Michael Potente
  11. Wiebke Herzog
  12. Didier YR Stainier
(2020)
Apelin signaling drives vascular endothelial cells towards a pro-angiogenic state
eLife 9:e55589.
https://doi.org/10.7554/eLife.55589

Share this article

https://doi.org/10.7554/eLife.55589

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Leif Benner, Savannah Muron ... Brian Oliver
    Research Article

    Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO’s role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5’-TAACNGT-3’ OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.