Apelin signaling drives vascular endothelial cells towards a pro-angiogenic state

  1. Christian SM Helker  Is a corresponding author
  2. Jean Eberlein
  3. Kerstin Wilhelm
  4. Toshiya Sugino
  5. Julian Malchow
  6. Annika Schuermann
  7. Stefan Baumeister
  8. Hyouk-Bum Kwon
  9. Hans-Martin Maischein
  10. Michael Potente
  11. Wiebke Herzog
  12. Didier YR Stainier  Is a corresponding author
  1. Philipps-University Marburg, Germany
  2. Max Planck Institute for Heart and Lung Research, Germany
  3. University of Muenster, Germany

Abstract

To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, Apelin expression is regulated by Notch signaling, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Christian SM Helker

    Faculty of Biology, Philipps-University Marburg, Marburg, Germany
    For correspondence
    christian.helker@biologie.uni-marburg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0427-5338
  2. Jean Eberlein

    Faculty of Biology, Philipps-University Marburg, Marburg, Germany
    Competing interests
    No competing interests declared.
  3. Kerstin Wilhelm

    Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  4. Toshiya Sugino

    Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6330-7275
  5. Julian Malchow

    Faculty of Biology, Philipps-University Marburg, Marburg, Germany
    Competing interests
    No competing interests declared.
  6. Annika Schuermann

    University of Muenster, Muenster, Germany
    Competing interests
    No competing interests declared.
  7. Stefan Baumeister

    Faculty of Biology, Philipps-University Marburg, Marburg, Germany
    Competing interests
    No competing interests declared.
  8. Hyouk-Bum Kwon

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  9. Hans-Martin Maischein

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  10. Michael Potente

    Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  11. Wiebke Herzog

    University of Muenster, Muenster, Germany
    Competing interests
    No competing interests declared.
  12. Didier YR Stainier

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    Didier.Stainier@mpi-bn.mpg.de
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026

Funding

Deutsche Forschungsgemeinschaft (SFB 834)

  • Didier YR Stainier

North Rhine-Westphalia (return fellowship')

  • Wiebke Herzog

Deutsche Forschungsgemeinschaft (SFB 834)

  • Christian SM Helker

Deutsche Forschungsgemeinschaft (GRK2213)

  • Christian SM Helker

Deutsche Forschungsgemeinschaft (GRK2213)

  • Jean Eberlein

Deutsche Forschungsgemeinschaft (GRK2213)

  • Julian Malchow

Deutsche Forschungsgemeinschaft (HE4585/3-1)

  • Wiebke Herzog

H2020 European Research Council (EMERGE (773047))

  • Michael Potente

Deutsche Forschungsgemeinschaft (EXC 2026)

  • Michael Potente

H2020 European Research Council (AdG project: ZMOD 694455)

  • Didier YR Stainier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Ethics StatementAll zebrafish husbandry was performed under standard conditions, and all experiments were conducted in accordance with institutional (MPG) and national ethical and animal welfare guidelines (Proposal numbers: B2/1017, B2/1041, B2/1218, B2/1138). All procedures conform to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Copyright

© 2020, Helker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,064
    views
  • 707
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christian SM Helker
  2. Jean Eberlein
  3. Kerstin Wilhelm
  4. Toshiya Sugino
  5. Julian Malchow
  6. Annika Schuermann
  7. Stefan Baumeister
  8. Hyouk-Bum Kwon
  9. Hans-Martin Maischein
  10. Michael Potente
  11. Wiebke Herzog
  12. Didier YR Stainier
(2020)
Apelin signaling drives vascular endothelial cells towards a pro-angiogenic state
eLife 9:e55589.
https://doi.org/10.7554/eLife.55589

Share this article

https://doi.org/10.7554/eLife.55589

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.