Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior

Abstract

Rett Syndrome is a devastating neurodevelopmental disorder resulting from mutations in the gene MECP2. Mutations of Mecp2 restricted to GABAergic cell types largely replicate the behavioral phenotypes associated with mouse models of Rett Syndrome, suggesting a pathophysiological role for inhibitory interneurons. Recent work has suggested that vasoactive intestinal peptide-expressing (VIP) interneurons may play a critical role in the proper development and function of cortical circuits, making them a potentially key point of vulnerability in neurodevelopmental disorders. However, little is known about the role of VIP interneurons in Rett Syndrome. Here we find that loss of MeCP2 specifically from VIP interneurons replicates key neural and behavioral phenotypes observed following global Mecp2 loss of function.

Data availability

Source data files are included for each figure and supplemental figure. Analysis code is available at https://github.com/jesscardin/Miri-Vinck-et-al. All data included in this study will be freely available upon request, as the data files and associated intermediate analysis files are very large (400GB) and depositing the full data is not feasible.

Article and author information

Author details

  1. James M Mossner

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Renata Batista-Brito

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rima Pant

    Department of Neuroscience, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica A Cardin

    Department of Neuroscience, Yale University, New Haven, United States
    For correspondence
    jess.cardin@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8209-5466

Funding

Simons Foundation (SFARI)

  • Jessica A Cardin

National Institute of Mental Health (MH113852)

  • Jessica A Cardin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph V Raimondo, University of Cape Town, South Africa

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All experiments were approved by the Institutional Animal Care and Use Committee of Yale University (#11317).

Version history

  1. Received: January 31, 2020
  2. Accepted: April 28, 2020
  3. Accepted Manuscript published: April 28, 2020 (version 1)
  4. Version of Record published: May 11, 2020 (version 2)

Copyright

© 2020, Mossner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,201
    views
  • 481
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James M Mossner
  2. Renata Batista-Brito
  3. Rima Pant
  4. Jessica A Cardin
(2020)
Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior
eLife 9:e55639.
https://doi.org/10.7554/eLife.55639

Share this article

https://doi.org/10.7554/eLife.55639

Further reading

    1. Neuroscience
    Geoffroy Delamare, Yosif Zaki ... Claudia Clopath
    Short Report

    Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.