Temperature stress induces mites to help their carrion beetle hosts by eliminating rival blowflies

  1. Syuan-Jyun Sun  Is a corresponding author
  2. Rebecca M Kilner
  1. University of Cambridge, United Kingdom

Abstract

Ecological conditions are known to change the expression of mutualisms though the causal agents driving such changes remain poorly understood. Here we show that temperature stress modulates the harm threatened by a common enemy, and thereby induces a phoretic mite to become a protective mutualist. Our experiments focus on the interactions between the burying beetle Nicrophorus vespilloides, an associated mite species Poecilochirus carabi and their common enemy, blowflies, when all three species reproduce on the same small vertebrate carrion. We show that mites compete with beetle larvae for food in the absence of blowflies, and reduce beetle reproductive success. However, when blowflies breed on the carrion too, mites enhance beetle reproductive success by eating blowfly eggs. High densities of mites are especially effective at promoting beetle reproductive success at higher and lower natural ranges in temperature, when blowfly larvae are more potent rivals for the limited resources on the carcass.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The data has also been deposited on Dryad (Sun, Syuan-Jyun; Kilner, Rebecca (2020), A temperature-enhanced threat from a common enemy converts a parasite into a mutualist, Dryad, Dataset, https://doi.org/10.5061/dryad.sj3tx961z).

The following data sets were generated

Article and author information

Author details

  1. Syuan-Jyun Sun

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    sjs243@ntu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7859-9346
  2. Rebecca M Kilner

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Society for the Study of Evolution (Rosemary Grant Award)

  • Syuan-Jyun Sun

Cambridge Commonwealth, European and International Trust (Taiwan Cambridge Scholarship)

  • Syuan-Jyun Sun

European Research Council (Consolidator grant 301785 BALDWINIAN_BEETLES)

  • Rebecca M Kilner

Royal Society (Wolfson Merit Award)

  • Rebecca M Kilner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care of the University of Cambridge. The protocol for field experimentation was approved by the Sub-Department of Animal Behaviour, University of Cambridge. During our experiments we handled our animals with care and they were not harmed at any stage. None of the animals that we used showed any signs of stress before, after or during the experiments.

Copyright

© 2020, Sun & Kilner

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,765
    views
  • 250
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Syuan-Jyun Sun
  2. Rebecca M Kilner
(2020)
Temperature stress induces mites to help their carrion beetle hosts by eliminating rival blowflies
eLife 9:e55649.
https://doi.org/10.7554/eLife.55649

Share this article

https://doi.org/10.7554/eLife.55649

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.