Biodiversity mediates the effects of stressors but not nutrients on litter decomposition

  1. Léa Beaumelle  Is a corresponding author
  2. Frederik De Laender
  3. Nico Eisenhauer
  1. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
  2. Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Belgium
  3. German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig,, Germany

Abstract

Understanding the consequences of ongoing biodiversity changes for ecosystems is a pressing challenge. Controlled biodiversity-ecosystem function experiments with random biodiversity loss scenarios have demonstrated that more diverse communities usually provide higher levels of ecosystem functioning. However, it is not clear if these results predict the ecosystem consequences of environmental changes that cause non-random alterations in biodiversity and community composition. We synthesized 69 independent studies reporting 660 observations of the impacts of two pervasive drivers of global change (chemical stressors and nutrient enrichment) on animal and microbial decomposer diversity and litter decomposition. Using meta-analysis and structural equation modelling, we show that declines in decomposer diversity and abundance explain reduced litter decomposition in response to stressors but not to nutrients. While chemical stressors generally reduced biodiversity and ecosystem functioning, detrimental effects of nutrients occurred only at high levels of nutrient inputs. Thus, more intense environmental change does not always result in stronger responses, illustrating the complexity of ecosystem consequences of biodiversity change. Overall, these findings provide strong evidence that the consequences of observed biodiversity change for ecosystems depend on the kind of environmental change, and are especially significant when human activities decrease biodiversity.

Data availability

Data and codes for the analyses are available on the iDiv Data repository (DOI: https://doi.org/10.25829/idiv.1868-15-3033) and GitHub (https://github.com/leabeaumelle/BEFunderGlobalChange)

Article and author information

Author details

  1. Léa Beaumelle

    Synthesis Centre (sDiv), German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
    For correspondence
    lea.beaumelle@idiv.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7836-8767
  2. Frederik De Laender

    Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Nico Eisenhauer

    Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig,, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0371-6720

Funding

Synthesis Centre (sDiv) of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the German Research Foundation (FZT 118)

  • Léa Beaumelle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Donoso, Escuela Politécnica Nacional, Ecuador

Publication history

  1. Received: February 6, 2020
  2. Accepted: June 24, 2020
  3. Accepted Manuscript published: June 26, 2020 (version 1)
  4. Accepted Manuscript updated: June 29, 2020 (version 2)
  5. Version of Record published: August 4, 2020 (version 3)

Copyright

© 2020, Beaumelle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,785
    Page views
  • 306
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Léa Beaumelle
  2. Frederik De Laender
  3. Nico Eisenhauer
(2020)
Biodiversity mediates the effects of stressors but not nutrients on litter decomposition
eLife 9:e55659.
https://doi.org/10.7554/eLife.55659
  1. Further reading

Further reading

    1. Ecology
    John Jackson et al.
    Research Article

    With the looming threat of abrupt ecological disruption due to a changing climate, predicting which species are most vulnerable to environmental change is critical. The life-history of a species is an evolved response to its environmental context, and therefore a promising candidate for explaining differences in climate-change responses. However, we need broad empirical assessments from across the worlds ecosystems to explore the link between life-history and climate-change responses. Here, we use long-term abundance records from 157 species of terrestrial mammal and a two-step Bayesian meta-regression framework to investigate the link between annual weather anomalies, population growth rates, and species-level life-history. Overall, we found no directional effect of temperature or precipitation anomalies or variance on annual population growth rates. Furthermore, population responses to weather anomalies were not predicted by phylogenetic covariance, and instead there was more variability in weather responses for populations within a species. Crucially, however, long-lived mammals with smaller litter sizes had smaller absolute population responses to weather anomalies compared to their shorter-living counterparts with larger litters. These results highlight the role of species-level life-history in driving responses to the environment.

    1. Ecology
    2. Microbiology and Infectious Disease
    Brian A Dillard et al.
    Short Report Updated

    Urbanization is rapidly altering Earth’s environments, demanding investigation of the impacts on resident wildlife. Here, we show that urban populations of coyotes (Canis latrans), crested anole lizards (Anolis cristatellus), and white-crowned sparrows (Zonotrichia leucophrys) acquire gut microbiota constituents found in humans, including gut bacterial lineages associated with urbanization in humans. Comparisons of urban and rural wildlife and human populations revealed significant convergence of gut microbiota among urban populations relative to rural populations. All bacterial lineages overrepresented in urban wildlife relative to rural wildlife and differentially abundant between urban and rural humans were also overrepresented in urban humans relative to rural humans. Remarkably, the bacterial lineage most overrepresented in urban anoles was a Bacteroides sequence variant that was also the most significantly overrepresented in urban human populations. These results indicate parallel effects of urbanization on human and wildlife gut microbiota and suggest spillover of bacteria from humans into wildlife in cities.