1. Microbiology and Infectious Disease
Download icon

Host-induced spermidine production in motile Pseudomonas aeruginosa triggers phagocytic uptake

Research Article
  • Cited 1
  • Views 964
  • Annotations
Cite this article as: eLife 2020;9:e55744 doi: 10.7554/eLife.55744

Abstract

Exploring the complexity of host-pathogen communication is vital to understand why<br /> microbes persist within a host, while others are cleared. Here, we employed a Dual-sequencing approach to unravel conversational turn-taking of dynamic host-pathogen communications. We demonstrate that upon hitting a host cell, motile Pseudomonas aeruginosa induce a specific gene expression program. This results in the expression of spermidine on the surface, which specifically activates the PIP3-pathway to induce phagocytic uptake into primary or immortalized murine cells. Non-motile bacteria are more immunogenic due to a lower expression of arnT upon host cell contact, but do not produce spermidine and are phagocytosed less. We demonstrate that not only the presence of pathogen inherent molecular patterns induces immune responses, but that bacterial motility is linked to a host-cell induced expression of additional immune modulators. Our results emphasize on the value of integrating microbiological and immunological findings to unravel complex and dynamic host-pathogen interactions.

Data availability

Raw files and reads per gene of the RNA sequencing approaches have been deposited in the NCBI Gene Expression Omnibus (GEO) under the accession number GSE141757.

The following data sets were generated

Article and author information

Author details

  1. Sebastian Felgner

    Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0030-2490
  2. Matthias Preusse

    Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ulrike Beutling

    Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Stahnke

    Cell biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Vinay Pawar

    Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Manfred Rohde

    Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark Brönstrup

    Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8971-7045
  8. Theresia Stradal

    Cell biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Susanne Häussler

    Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    For correspondence
    susanne.haeussler@helmholtz-hzi.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6141-9102

Funding

ERC Consolidator Grant COMBAT (724290)

  • Susanne Häussler

DFG, Germany's Excellence Strategy - EXC 2155 RESIST (390874280)

  • Susanne Häussler

SPP (1879)

  • Susanne Häussler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to guidelines of the German Law for Animal Protection and with permission of the local ethics committee and the local authority LAVES (Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit). C57BL/6 mice derived from our own breeding.

Reviewing Editor

  1. Sophie Helaine, Harvard Medical School, United States

Publication history

  1. Received: February 4, 2020
  2. Accepted: September 15, 2020
  3. Accepted Manuscript published: September 22, 2020 (version 1)
  4. Version of Record published: October 6, 2020 (version 2)

Copyright

© 2020, Felgner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 964
    Page views
  • 140
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Justin D Lormand et al.
    Research Advance

    RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonucleotidase, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC employs similar structural features that distinguish these two classes as dinucleotidases from other exonucleases, the key determinants for dinucleotidase activity are realized through distinct structural scaffolds. The structures together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases indicates convergent evolution as the mechanism of how dinucleotidase activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinucleotidase activity further underlines the important role these analogous proteins play for cell growth.

    1. Microbiology and Infectious Disease
    Shida Shangguan et al.
    Research Article

    A gene signature previously correlated with mosaic adenovirus 26 vaccine protection in simian immunodeficiency virus (SIV) and SHIV challenge models in non-human primates (NHP). In this report we investigated presence of this signature as a correlate of reduced risk in human clinical trials and potential mechanisms of protection. The absence of this gene signature in the DNA/rAd5 human vaccine trial, which did not show efficacy, strengthens our hypothesis that this signature is only enriched in studies that demonstrated protection. This gene signature was enriched in the partially effective RV144 human trial that administered the ALVAC/protein vaccine, and we find that the signature associates with both decreased risk of HIV-1 acquisition and increased vaccine efficacy. Total RNA-seq in a clinical trial that used the same vaccine regimen as the RV144 HIV vaccine implicated antibody-dependent cellular phagocytosis (ADCP) as a potential mechanism of vaccine protection. CITE-seq profiling of 53 surface markers and transcriptomes of 53,777 single cells from the same trial showed that genes in this signature were primarily expressed in cells belonging to the myeloid lineage, including monocytes, which are major effector cells for ADCP. The consistent association of this transcriptome signature with vaccine efficacy represents a tool both to identify potential mechanisms, as with ADCP here, and to screen novel approaches to accelerate development of new vaccine candidates.