Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration

  1. Zhian Ye
  2. Zhongwu Su
  3. Siyu Xie
  4. Yuye Liu
  5. Yongqiang Wang
  6. Xi Xu
  7. Yiqing Zheng
  8. Meng Zhao  Is a corresponding author
  9. Linjia Jiang  Is a corresponding author
  1. Sun Yat-Sen Memorial Hospital, China
  2. Sun Yat-Sen University, China

Abstract

The sox2 expressing (sox2+) progenitors in adult mammalian inner ear lose the capacity to regenerate while progenitors in the zebrafish lateral line are able to proliferate and regenerate damaged HCs throughout lifetime. To mimic the HC damage in mammals we have established a zebrafish severe injury model to eliminate both progenitors and HCs. The atoh1a expressing (atoh1a+) HC precursors were the main population that survived post severe injury, and gained sox2 expression to initiate progenitor regeneration. In response to severe injury, yap was activated to upregulate lin28a transcription. Severe-injury-induced progenitor regeneration was disabled in lin28a or yap mutants. In contrary, overexpression of lin28a initiated the recovery of sox2+ progenitors. Mechanistically, microRNA let7 acted downstream of lin28a to activate Wnt pathway for promoting regeneration. Our findings that lin28a is necessary and sufficient to regenerate the exhausted sox2+ progenitors shed light on restoration of progenitors to initiate HC regeneration in mammals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Zhian Ye

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhongwu Su

    Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Siyu Xie

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuye Liu

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yongqiang Wang

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xi Xu

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yiqing Zheng

    Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Meng Zhao

    Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
    For correspondence
    zhaom38@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Linjia Jiang

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    For correspondence
    jianglj7@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8854-2610

Funding

Ministry of Science and Technology of the People's Republic of China (National Key R&D Program of China,2018YFA0108304)

  • Linjia Jiang

National Science Foundation (Youth Project,81800164)

  • Linjia Jiang

National Science Foundation (General Project,31871467)

  • Linjia Jiang

Guangdong Science and Technology Department (basic research project FF0C;2018A030313497)

  • Linjia Jiang

Guangdong Science and Technology Department (The key Research and Development Program of Guangdong Province,2019B020234002)

  • Meng Zhao

Shenzhen Foundation of Science and Technology (JCYJ20170818103626421)

  • Meng Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,018
    views
  • 462
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhian Ye
  2. Zhongwu Su
  3. Siyu Xie
  4. Yuye Liu
  5. Yongqiang Wang
  6. Xi Xu
  7. Yiqing Zheng
  8. Meng Zhao
  9. Linjia Jiang
(2020)
Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration
eLife 9:e55771.
https://doi.org/10.7554/eLife.55771

Share this article

https://doi.org/10.7554/eLife.55771

Further reading

    1. Developmental Biology
    Wenyue Guan, Ziyan Nie ... Jonathan Enriquez
    Research Article

    Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp−, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.

    1. Developmental Biology
    Ming-Ming Chen, Yue Zhao ... Zheng-Xing Lian
    Research Article

    Mutations in the well-known Myostatin (MSTN) produce a ‘double-muscle’ phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant ‘double-muscle’ phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.