Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration

  1. Zhian Ye
  2. Zhongwu Su
  3. Siyu Xie
  4. Yuye Liu
  5. Yongqiang Wang
  6. Xi Xu
  7. Yiqing Zheng
  8. Meng Zhao  Is a corresponding author
  9. Linjia Jiang  Is a corresponding author
  1. Sun Yat-Sen Memorial Hospital, China
  2. Sun Yat-Sen University, China

Abstract

The sox2 expressing (sox2+) progenitors in adult mammalian inner ear lose the capacity to regenerate while progenitors in the zebrafish lateral line are able to proliferate and regenerate damaged HCs throughout lifetime. To mimic the HC damage in mammals we have established a zebrafish severe injury model to eliminate both progenitors and HCs. The atoh1a expressing (atoh1a+) HC precursors were the main population that survived post severe injury, and gained sox2 expression to initiate progenitor regeneration. In response to severe injury, yap was activated to upregulate lin28a transcription. Severe-injury-induced progenitor regeneration was disabled in lin28a or yap mutants. In contrary, overexpression of lin28a initiated the recovery of sox2+ progenitors. Mechanistically, microRNA let7 acted downstream of lin28a to activate Wnt pathway for promoting regeneration. Our findings that lin28a is necessary and sufficient to regenerate the exhausted sox2+ progenitors shed light on restoration of progenitors to initiate HC regeneration in mammals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Zhian Ye

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhongwu Su

    Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Siyu Xie

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuye Liu

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yongqiang Wang

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xi Xu

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yiqing Zheng

    Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Meng Zhao

    Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
    For correspondence
    zhaom38@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Linjia Jiang

    Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, China
    For correspondence
    jianglj7@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8854-2610

Funding

Ministry of Science and Technology of the People's Republic of China (National Key R&D Program of China,2018YFA0108304)

  • Linjia Jiang

National Science Foundation (Youth Project,81800164)

  • Linjia Jiang

National Science Foundation (General Project,31871467)

  • Linjia Jiang

Guangdong Science and Technology Department (basic research project FF0C;2018A030313497)

  • Linjia Jiang

Guangdong Science and Technology Department (The key Research and Development Program of Guangdong Province,2019B020234002)

  • Meng Zhao

Shenzhen Foundation of Science and Technology (JCYJ20170818103626421)

  • Meng Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,062
    views
  • 476
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhian Ye
  2. Zhongwu Su
  3. Siyu Xie
  4. Yuye Liu
  5. Yongqiang Wang
  6. Xi Xu
  7. Yiqing Zheng
  8. Meng Zhao
  9. Linjia Jiang
(2020)
Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration
eLife 9:e55771.
https://doi.org/10.7554/eLife.55771

Share this article

https://doi.org/10.7554/eLife.55771

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.