Alcids 'fly' at efficient Strouhal numbers in both air and water but vary stroke velocity and angle

  1. Anthony Lapsansky  Is a corresponding author
  2. Daniel Zatz
  3. Bret W Tobalske
  1. University of Montana, United States
  2. ZatzWorks Inc, United States

Abstract

Birds that use their wings for 'flight' in both air and water are expected to fly poorly in each fluid relative to single-fluid specialists; i.e., these jacks-of-all-trades should be the masters of none. Alcids exhibit exceptional dive performance while retaining aerial flight. We hypothesized that alcids maintain efficient Strouhal numbers and stroke velocities across air and water, allowing them to mitigate the costs of their 'fluid generalism'. We show that alcids cruise at Strouhal numbers between 0.10 and 0.40 – on par with single-fluid specialists – in both air and water but flap their wings ~50% slower in water. Thus, these species either contract their muscles at inefficient velocities or maintain a two-geared muscle system, highlighting a clear cost to using the same morphology for locomotion in two fluids. Additionally, alcids varied stroke-plane angle between air and water and chord angle during aquatic flight, expanding their performance envelope.

Data availability

All data are available at the following link: https://github.com/alapsansky/Lapsansky_Zatz_Tobalske_eLife_2020

The following previously published data sets were used

Article and author information

Author details

  1. Anthony Lapsansky

    Department of Biological Sciences, University of Montana, Missoula, United States
    For correspondence
    anthony.lapsansky@umontana.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7530-7830
  2. Daniel Zatz

    ZatzWorks Inc, Homer, United States
    Competing interests
    Daniel Zatz, is affiliated with ZatzWorks Inc. The author has no financial interests to declare.
  3. Bret W Tobalske

    Department of Biological Sciences, University of Montana, Missoula, United States
    Competing interests
    No competing interests declared.

Funding

National Science Foundation (EFRI 1935216)

  • Bret W Tobalske

National Science Foundation (CMMI 1234737)

  • Bret W Tobalske

Drollinger-Dial Family Charitable Foundation (NA)

  • Anthony Lapsansky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All work was approved by the University of Montana's Institutional Animal Care and Use Committee (AUP 004-19BTDBS-020419). Work at the Alaska SeaLife Center was performed with approval from the animal husbandry and research staff.

Copyright

© 2020, Lapsansky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 848
    views
  • 144
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony Lapsansky
  2. Daniel Zatz
  3. Bret W Tobalske
(2020)
Alcids 'fly' at efficient Strouhal numbers in both air and water but vary stroke velocity and angle
eLife 9:e55774.
https://doi.org/10.7554/eLife.55774

Share this article

https://doi.org/10.7554/eLife.55774

Further reading

    1. Ecology
    2. Evolutionary Biology
    Zhixian Zhang, Jianying Li ... Songdou Zhang
    Research Article

    Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.

    1. Ecology
    Ivan Pokrovsky, Teja Curk ... Martin Wikelski
    Research Article

    Advances in tracking technologies have revealed the diverse migration patterns of birds, which are critical for range mapping and population estimation. Population trends are usually estimated in breeding ranges where birds remain stationary, but for species that breed in remote areas like the Arctic, these trends are often assessed in over-wintering ranges. Assessing population trends during the wintering season is challenging due to the extensive movements of birds in these ranges, which requires a deep understanding of the movement dynamics. However, these movements remain understudied, particularly in the mid-latitudes, where many Arctic breeders overwinter, increasing uncertainty in their ranges and numbers. Here, we show that the Arctic breeding raptor Rough-legged buzzard, which overwinters in the mid-latitudes, has a specific wintering strategy. After migrating ca. 1500 km from the Arctic to mid-latitudes, the birds continue to move throughout the entire over-wintering period, traveling another 1000 km southwest and then back northeast as the snowline advances. This continuous movement makes their wintering range dynamic throughout the season. In essence, this movement represents an extension of the quick migration process, albeit at a slower pace, and we have termed this migration pattern ‘foxtrot migration’, drawing an analogy to the alternating fast and slow movements of the foxtrot dance. These results highlight the potential errors in range mapping from single mid-winter surveys and emphasize the importance of this migration pattern in assessing the conservation status of bird species. Understanding this migration pattern could help to correctly estimate bird populations in over-wintering ranges, which is especially important for species that nest in hard-to-reach regions such as the Arctic.