Homeostatic plasticity fails at the intersection of autism-gene mutations and a novel class of common genetic modifiers

Abstract

We identify a set of common phenotypic modifiers that interact with five independent autism gene orthologs (RIMS1, CHD8, CHD2, WDFY3, ASH1L) causing a common failure of presynaptic homeostatic plasticity (PHP) in Drosophila. Heterozygous null mutations in each autism gene are demonstrated to have normal baseline neurotransmission and PHP. However, PHP is sensitized and rendered prone to failure. A subsequent electrophysiology-based genetic screen identifies the first known heterozygous mutations that commonly genetically interact with multiple ASD gene orthologs, causing PHP to fail. Two phenotypic modifiers identified in the screen, PDPK1 and PPP2R5D, are characterized. Finally, transcriptomic, ultrastructural and electrophysiological analyses define one mechanism by which PHP fails; an unexpected, maladaptive up-regulation of CREG, a conserved, neuronally expressed, stress response gene and a novel repressor of PHP. Thus, we define a novel genetic landscape by which diverse, unrelated autism risk genes may converge to commonly affect the robustness of synaptic transmission.

Data availability

Sequencing data have been deposited in GEO under accession code GSE153225. Analysis code is available via Github https://github.com/joonan30/Genc2020_RNAseq

The following data sets were generated

Article and author information

Author details

  1. Özgür Genç

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Joon-Yong An

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Richard D Fetter

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Yelena Kulik

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Giulia Zunino

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Stephan J Sanders

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Graeme W Davis

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    graeme.davis@ucsf.edu
    Competing interests
    Graeme W Davis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1355-8401

Funding

National Institute of Neurological Disorders and Stroke (R35-NS097212)

  • Graeme W Davis

Simons Foundation (SFARI #401636)

  • Graeme W Davis

Simons Foundation (SFARI #402281)

  • Stephan J Sanders

National Institute of Mental Health (R01 MH110928)

  • Stephan J Sanders

NRF (2017M3C7A1026959)

  • Joon-Yong An

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Genç et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,842
    views
  • 434
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Özgür Genç
  2. Joon-Yong An
  3. Richard D Fetter
  4. Yelena Kulik
  5. Giulia Zunino
  6. Stephan J Sanders
  7. Graeme W Davis
(2020)
Homeostatic plasticity fails at the intersection of autism-gene mutations and a novel class of common genetic modifiers
eLife 9:e55775.
https://doi.org/10.7554/eLife.55775

Share this article

https://doi.org/10.7554/eLife.55775

Further reading

    1. Neuroscience
    Hans Martin Kjer, Mariam Andersson ... Tim B Dyrby
    Research Article

    We used diffusion MRI and x-ray synchrotron imaging on monkey and mice brains to examine the organisation of fibre pathways in white matter across anatomical scales. We compared the structure in the corpus callosum and crossing fibre regions and investigated the differences in cuprizone-induced demyelination in mouse brains versus healthy controls. Our findings revealed common principles of fibre organisation that apply despite the varying patterns observed across species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways. Fasciculi exhibited non-straight paths around obstacles like blood vessels, comparable across the samples of varying fibre complexity and demyelination. Quantifications of fibre orientation distributions were consistent across anatomical length scales and modalities, whereas tissue anisotropy had a more complex relationship, both dependent on the field-of-view. Our study emphasises the need to balance field-of-view and voxel size when characterising white matter features across length scales.

    1. Neuroscience
    Sergio Plaza-Alonso, Nicolas Cano-Astorga ... Lidia Alonso-Nanclares
    Research Article Updated

    The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the microanatomical features of synapses in all layers of the medial EC (MEC) from the human brain. Using this technology, 12,974 synapses were fully 3D reconstructed at the ultrastructural level. The MEC presented a distinct set of synaptic features, differentiating this region from other human cortical areas. Furthermore, ultrastructural synaptic characteristics within the MEC was predominantly similar, although layers I and VI exhibited several synaptic characteristics that were distinct from other layers. The present study constitutes an extensive description of the synaptic characteristics of the neuropil of all layers of the EC, a crucial step to better understand the connectivity of this cortical region, in both health and disease.