Diversity-decomposition relationships in forests worldwide

  1. Liang Kou  Is a corresponding author
  2. Lei Jiang
  3. Stephan Hättenschwiler
  4. Miaomiao Zhang
  5. Shuli Niu
  6. Xiaoli Fu
  7. Xiaoqin Dai
  8. Han Yan
  9. Shenggong Li  Is a corresponding author
  10. Huimin Wang  Is a corresponding author
  1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China
  2. CNRS, France
  3. Research Institute of Forestry, Chinese Academy of Forestry, China

Abstract

Plant species diversity affects carbon and nutrient cycling during litter decomposition, yet the generality of the direction of this effect and its magnitude remain uncertain. With a meta-analysis including 65 field studies across the Earth's major forest ecosystems, we show here that decomposition was faster when litter was composed of more than one species. These positive biodiversity effects were mostly driven by temperate forests, but were more variable in other forests. Litter mixture effects emerged most strongly in early decomposition stages and were related to divergence in litter quality. Litter diversity also accelerated nitrogen, but not phosphorus release, potentially indicating a decoupling of nitrogen and phosphorus cycling and perhaps a shift in ecosystem nutrient limitation with changing biodiversity. Our findings demonstrate the importance of litter diversity effects for carbon and nutrient dynamics during decomposition, and show how these effects vary with litter traits, decomposer complexity and forest characteristics.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data are available on Dryad:https://doi.org/10.5061/dryad.nk98sf7qc

The following data sets were generated

Article and author information

Author details

  1. Liang Kou

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    For correspondence
    koul@igsnrr.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2187-0721
  2. Lei Jiang

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephan Hättenschwiler

    CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Miaomiao Zhang

    State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Shuli Niu

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoli Fu

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaoqin Dai

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijijng, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Han Yan

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Shenggong Li

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    For correspondence
    lisg@igsnrr.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Huimin Wang

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    For correspondence
    wanghm@igsnrr.ac.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (41830646; 31570443)

  • Shenggong Li

National Key Research and Development Program of China (2016YFD0600202)

  • Shenggong Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Donoso, Escuela Politécnica Nacional, Ecuador

Version history

  1. Received: February 6, 2020
  2. Accepted: June 20, 2020
  3. Accepted Manuscript published: June 26, 2020 (version 1)
  4. Version of Record published: August 4, 2020 (version 2)

Copyright

© 2020, Kou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,648
    Page views
  • 451
    Downloads
  • 40
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liang Kou
  2. Lei Jiang
  3. Stephan Hättenschwiler
  4. Miaomiao Zhang
  5. Shuli Niu
  6. Xiaoli Fu
  7. Xiaoqin Dai
  8. Han Yan
  9. Shenggong Li
  10. Huimin Wang
(2020)
Diversity-decomposition relationships in forests worldwide
eLife 9:e55813.
https://doi.org/10.7554/eLife.55813

Further reading

    1. Ecology
    2. Evolutionary Biology
    Hannah J Williams, Vivek H Sridhar ... Amanda D Melin
    Review Article

    Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a ‘sensory collective’; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify ‘sensescapes’. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.

    1. Ecology
    2. Plant Biology
    Daniel Fuks, Yoel Melamed ... Ehud Weiss
    Research Article

    Global agro-biodiversity has resulted from processes of plant migration and agricultural adoption. Although critically affecting current diversity, crop diffusion from Classical antiquity to the Middle Ages is poorly researched, overshadowed by studies on that of prehistoric periods. A new archaeobotanical dataset from three Negev Highland desert sites demonstrates the first millennium CE&'s significance for long-term agricultural change in southwest Asia. This enables evaluation of the 'Islamic Green Revolution' (IGR) thesis compared to 'Roman Agricultural Diffusion' (RAD), and both versus crop diffusion during and since the Neolithic. Among the finds, some of the earliest aubergine (Solanum melongena) seeds in the Levant represent the proposed IGR. Several other identified economic plants, including two unprecedented in Levantine archaeobotany-jujube (Ziziphus jujuba/mauritiana) and white lupine (Lupinus albus)-implicate RAD as the greater force for crop migrations. Altogether the evidence supports a gradualist model for Holocene-wide crop diffusion, within which the first millennium CE contributed more to global agricultural diversity than any earlier period.