Diversity-decomposition relationships in forests worldwide

  1. Liang Kou  Is a corresponding author
  2. Lei Jiang
  3. Stephan Hättenschwiler
  4. Miaomiao Zhang
  5. Shuli Niu
  6. Xiaoli Fu
  7. Xiaoqin Dai
  8. Han Yan
  9. Shenggong Li  Is a corresponding author
  10. Huimin Wang  Is a corresponding author
  1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China
  2. CNRS, France
  3. Research Institute of Forestry, Chinese Academy of Forestry, China

Abstract

Plant species diversity affects carbon and nutrient cycling during litter decomposition, yet the generality of the direction of this effect and its magnitude remain uncertain. With a meta-analysis including 65 field studies across the Earth's major forest ecosystems, we show here that decomposition was faster when litter was composed of more than one species. These positive biodiversity effects were mostly driven by temperate forests, but were more variable in other forests. Litter mixture effects emerged most strongly in early decomposition stages and were related to divergence in litter quality. Litter diversity also accelerated nitrogen, but not phosphorus release, potentially indicating a decoupling of nitrogen and phosphorus cycling and perhaps a shift in ecosystem nutrient limitation with changing biodiversity. Our findings demonstrate the importance of litter diversity effects for carbon and nutrient dynamics during decomposition, and show how these effects vary with litter traits, decomposer complexity and forest characteristics.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data are available on Dryad:https://doi.org/10.5061/dryad.nk98sf7qc

The following data sets were generated

Article and author information

Author details

  1. Liang Kou

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    For correspondence
    koul@igsnrr.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2187-0721
  2. Lei Jiang

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephan Hättenschwiler

    CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Miaomiao Zhang

    State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Shuli Niu

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoli Fu

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaoqin Dai

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijijng, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Han Yan

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Shenggong Li

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    For correspondence
    lisg@igsnrr.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Huimin Wang

    Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    For correspondence
    wanghm@igsnrr.ac.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (41830646; 31570443)

  • Shenggong Li

National Key Research and Development Program of China (2016YFD0600202)

  • Shenggong Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Donoso, Escuela Politécnica Nacional, Ecuador

Version history

  1. Received: February 6, 2020
  2. Accepted: June 20, 2020
  3. Accepted Manuscript published: June 26, 2020 (version 1)
  4. Version of Record published: August 4, 2020 (version 2)

Copyright

© 2020, Kou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,763
    views
  • 474
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liang Kou
  2. Lei Jiang
  3. Stephan Hättenschwiler
  4. Miaomiao Zhang
  5. Shuli Niu
  6. Xiaoli Fu
  7. Xiaoqin Dai
  8. Han Yan
  9. Shenggong Li
  10. Huimin Wang
(2020)
Diversity-decomposition relationships in forests worldwide
eLife 9:e55813.
https://doi.org/10.7554/eLife.55813

Share this article

https://doi.org/10.7554/eLife.55813

Further reading

    1. Ecology
    Anna L Erdei, Aneth B David ... Teun Dekker
    Research Article Updated

    Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push–pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop’s constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize–Desmodium push–pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.

    1. Ecology
    Songdou Zhang, Shiheng An
    Insight

    The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.