Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat

  1. Lisa R Beutler
  2. Timothy V Corpuz
  3. Jamie S Ahn
  4. Seher Kosar
  5. Weimin Song
  6. Yiming Chen
  7. Zachary A Knight  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Northwestern University, United States

Abstract

Body weight is regulated by interoceptive neural circuits that track energy need, but how the activity of these circuits is altered in obesity remains poorly understood. Here we describe the in vivo dynamics of hunger-promoting AgRP neurons during the development of diet-induced obesity in mice. We show that high-fat diet attenuates the response of AgRP neurons to an array of nutritionally-relevant stimuli including food cues, intragastric nutrients, cholecystokinin and ghrelin. These alterations are are specific to dietary fat but not carbohydrate or protein. Subsequent weight loss restores the responsiveness of AgRP neurons to exterosensory cues but fails to rescue their sensitivity to gastrointestinal hormones or nutrients. These findings reveal that obesity triggers broad dysregulation of hypothalamic hunger neurons that is incompletely reversed by weight loss and may contribute to the difficulty of maintaining a reduced weight.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Lisa R Beutler

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy V Corpuz

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jamie S Ahn

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Seher Kosar

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Weimin Song

    Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yiming Chen

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Zachary A Knight

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    zachary.knight@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7621-1478

Funding

National Institutes of Health (R01DK106399)

  • Zachary A Knight

National Institutes of Health (R01NS094781)

  • Zachary A Knight

National Institutes of Health (DP2DK021153)

  • Zachary A Knight

Howard Hughes Medical Institute (Investigator)

  • Zachary A Knight

American Diabetes Association (Pathway Award)

  • Zachary A Knight

New York Stem Cell Foundation (Robertson Investigator Award)

  • Zachary A Knight

Rita Allen Foundation (Scholar Award)

  • Zachary A Knight

National Institutes of Health (K08DK118188)

  • Lisa R Beutler

National Institutes of Health (P30 DK063720)

  • Lisa R Beutler

The funders played no role in the design or interpretation of the work.

Ethics

Animal experimentation: Experimental protocols were approved by the University of California, San Francisco IACUC following the National Institutes of Health guidelines for the Care and Use of Laboratory Animals. (protocol# AN179674)

Copyright

© 2020, Beutler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,553
    views
  • 1,010
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lisa R Beutler
  2. Timothy V Corpuz
  3. Jamie S Ahn
  4. Seher Kosar
  5. Weimin Song
  6. Yiming Chen
  7. Zachary A Knight
(2020)
Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat
eLife 9:e55909.
https://doi.org/10.7554/eLife.55909

Share this article

https://doi.org/10.7554/eLife.55909

Further reading

    1. Neuroscience
    Marine Schimel, Ta-Chu Kao, Guillaume Hennequin
    Research Article

    During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.

    1. Neuroscience
    Jing Jun Wong, Alessandro Bongioanni ... Bolton KH Chau
    Research Article

    Humans make irrational decisions in the presence of irrelevant distractor options. There is little consensus on whether decision making is facilitated or impaired by the presence of a highly rewarding distractor, or whether the distractor effect operates at the level of options’ component attributes rather than at the level of their overall value. To reconcile different claims, we argue that it is important to consider the diversity of people’s styles of decision making and whether choice attributes are combined in an additive or multiplicative way. Employing a multi-laboratory dataset investigating the same experimental paradigm, we demonstrated that people used a mix of both approaches and the extent to which approach was used varied across individuals. Critically, we identified that this variability was correlated with the distractor effect during decision making. Individuals who tended to use a multiplicative approach to compute value, showed a positive distractor effect. In contrast, a negative distractor effect (divisive normalisation) was prominent in individuals tending towards an additive approach. Findings suggest that the distractor effect is related to how value is constructed, which in turn may be influenced by task and subject specificities. This concurs with recent behavioural and neuroscience findings that multiple distractor effects co-exist.