Combining agent-based, trait-based and demographic approaches to model coral-community dynamics

  1. Bruno Sylvain Carturan  Is a corresponding author
  2. Jason Pither  Is a corresponding author
  3. Jean-Philippe Maréchal
  4. Corey J. A. Bradshaw
  5. Lael Parrott  Is a corresponding author
  1. University of British Columbia, Okanagan Campus, Canada
  2. Nova Blue Environment, France
  3. Flinders University, Australia

Abstract

The complexity of coral-reef ecosystems makes it challenging to predict their dynamics and resilience under future disturbance regimes. Models for coral-reef dynamics do not adequately account for the high functional diversity exhibited by corals. Models that are ecologically and mechanistically detailed are therefore required to simulate the ecological processes driving coral reef dynamics. Here we describe a novel model that includes processes at different spatial scales, and the contribution of species’ functional diversity to benthic-community dynamics. We calibrated and validated the model to reproduce observed dynamics using empirical data from Caribbean reefs. The model exhibits realistic community dynamics, and individual population dynamics are ecologically plausible. A global sensitivity analysis revealed that the number of larvae produced locally, and interaction-induced reductions in growth rate are the parameters with the largest influence on community dynamics. The model provides a platform for virtual experiments to explore diversity-functioning relationships in coral reefs.

Data availability

All data generated and associated scripts have been deposited in OSF under the DOI 10.17605/OSF.IO/CTQ43.

The following previously published data sets were used

Article and author information

Author details

  1. Bruno Sylvain Carturan

    Biology, University of British Columbia, Okanagan Campus, Kelowna, Canada
    For correspondence
    bruno.carturan@alumni.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6811-1063
  2. Jason Pither

    Biology, Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
    For correspondence
    jason.pither@ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean-Philippe Maréchal

    NA, Nova Blue Environment, Schoelcher, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Corey J. A. Bradshaw

    Global Ecology, College of Science and Engineering, Flinders University, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5328-7741
  5. Lael Parrott

    Biology, Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
    For correspondence
    lael.parrott@ubc.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

Canada Foundation for Innovation (Leaders Opportunity Fund,23065)

  • Jason Pither

Natural Sciences and Engineering Research Council of Canada (RGPIN,2019-05190)

  • Lael Parrott

Natural Sciences and Engineering Research Council of Canada (RGPIN,2014-04176)

  • Jason Pither

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Carturan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,341
    views
  • 397
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bruno Sylvain Carturan
  2. Jason Pither
  3. Jean-Philippe Maréchal
  4. Corey J. A. Bradshaw
  5. Lael Parrott
(2020)
Combining agent-based, trait-based and demographic approaches to model coral-community dynamics
eLife 9:e55993.
https://doi.org/10.7554/eLife.55993

Share this article

https://doi.org/10.7554/eLife.55993

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Computational and Systems Biology
    George N Bendzunas, Dominic P Byrne ... Natarajan Kannan
    Research Article

    In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.