Combining agent-based, trait-based and demographic approaches to model coral-community dynamics

  1. Bruno Sylvain Carturan  Is a corresponding author
  2. Jason Pither  Is a corresponding author
  3. Jean-Philippe Maréchal
  4. Corey J. A. Bradshaw
  5. Lael Parrott  Is a corresponding author
  1. University of British Columbia, Okanagan Campus, Canada
  2. Nova Blue Environment, France
  3. Flinders University, Australia

Abstract

The complexity of coral-reef ecosystems makes it challenging to predict their dynamics and resilience under future disturbance regimes. Models for coral-reef dynamics do not adequately account for the high functional diversity exhibited by corals. Models that are ecologically and mechanistically detailed are therefore required to simulate the ecological processes driving coral reef dynamics. Here we describe a novel model that includes processes at different spatial scales, and the contribution of species’ functional diversity to benthic-community dynamics. We calibrated and validated the model to reproduce observed dynamics using empirical data from Caribbean reefs. The model exhibits realistic community dynamics, and individual population dynamics are ecologically plausible. A global sensitivity analysis revealed that the number of larvae produced locally, and interaction-induced reductions in growth rate are the parameters with the largest influence on community dynamics. The model provides a platform for virtual experiments to explore diversity-functioning relationships in coral reefs.

Data availability

All data generated and associated scripts have been deposited in OSF under the DOI 10.17605/OSF.IO/CTQ43.

The following previously published data sets were used

Article and author information

Author details

  1. Bruno Sylvain Carturan

    Biology, University of British Columbia, Okanagan Campus, Kelowna, Canada
    For correspondence
    bruno.carturan@alumni.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6811-1063
  2. Jason Pither

    Biology, Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
    For correspondence
    jason.pither@ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean-Philippe Maréchal

    NA, Nova Blue Environment, Schoelcher, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Corey J. A. Bradshaw

    Global Ecology, College of Science and Engineering, Flinders University, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5328-7741
  5. Lael Parrott

    Biology, Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
    For correspondence
    lael.parrott@ubc.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

Canada Foundation for Innovation (Leaders Opportunity Fund,23065)

  • Jason Pither

Natural Sciences and Engineering Research Council of Canada (RGPIN,2019-05190)

  • Lael Parrott

Natural Sciences and Engineering Research Council of Canada (RGPIN,2014-04176)

  • Jason Pither

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Carturan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,247
    views
  • 385
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bruno Sylvain Carturan
  2. Jason Pither
  3. Jean-Philippe Maréchal
  4. Corey J. A. Bradshaw
  5. Lael Parrott
(2020)
Combining agent-based, trait-based and demographic approaches to model coral-community dynamics
eLife 9:e55993.
https://doi.org/10.7554/eLife.55993

Share this article

https://doi.org/10.7554/eLife.55993

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Miguel Martinez-Ara, Federico Comoglio, Bas van Steensel
    Research Article

    Genes are often regulated by multiple enhancers. It is poorly understood how the individual enhancer activities are combined to control promoter activity. Anecdotal evidence has shown that enhancers can combine sub-additively, additively, synergistically, or redundantly. However, it is not clear which of these modes are more frequent in mammalian genomes. Here, we systematically tested how pairs of enhancers activate promoters using a three-way combinatorial reporter assay in mouse embryonic stem cells. By assaying about 69,000 enhancer-enhancer-promoter combinations we found that enhancer pairs generally combine near-additively. This behaviour was conserved across seven developmental promoters tested. Surprisingly, these promoters scale the enhancer signals in a non-linear manner that depends on promoter strength. A housekeeping promoter showed an overall different response to enhancer pairs, and a smaller dynamic range. Thus, our data indicate that enhancers mostly act additively, but promoters transform their collective effect non-linearly.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Divyoj Singh, Sriram Ramaswamy ... Mohd Suhail Rizvi
    Research Article

    Planar cell polarity (PCP) – tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface – is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules – broadly classified into “global” and “local” modules – have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment – a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - the rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.