Population coupling predicts the plasticity of stimulus responses in cortical circuits
Abstract
Some neurons have stimulus responses that are stable over days, whereas other neurons have highly plastic stimulus responses. Using a recurrent network model, we explore whether this could be due to an underlying diversity in their synaptic plasticity. We find that, in a network with diverse learning rates, neurons with fast rates are more coupled to population activity than neurons with slow rates. This plasticity-coupling link predicts that neurons with high population coupling exhibit more long-term stimulus response variability than neurons with low population coupling. We substantiate this prediction using recordings from the Allen Brain Observatory, finding that a neuron's population coupling is correlated with the plasticity of its orientation preference. Simulations of a simple perceptual learning task suggest a particular functional architecture: a stable 'backbone' of stimulus representation formed by neurons with low population coupling, on top of which lies a flexible substrate of neurons with high population coupling.
Data availability
All calcium imaging data came from the Allen Institute for Brain Science, Allen Brain Observatory. Available from: http://observatory.brain-map.org/visualcoding/A list of experiment IDs can be found on FigShare, under the doi 10.6084/m9.figshare.11837406Code has been made available at https://github.com/yannaodh/sweeney_clopath_2020 and is under the doi:10.5281/zenodo.3757305.Previously Published Datasets: Allen Brain Observatory: Allen Institute, 2016, http://observatory.brain-map.org/visualcoding/, http://observatory.brain-map.org/visualcoding/
Article and author information
Author details
Funding
Biotechnology and Biological Sciences Research Council (BB/N013956/1,BB/N019008/1)
- Claudia Clopath
Wellcome (200790/Z/16/Z)
- Claudia Clopath
Engineering and Physical Sciences Research Council (EP/R035806/1)
- Claudia Clopath
Simons Foundation (564408)
- Claudia Clopath
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Sweeney & Clopath
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,493
- views
-
- 443
- downloads
-
- 26
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Over the past century of memory research, the interplay between initial and later-learned information in determining long-term memory retention has been of central interest. A likely factor for determining whether initial and later memories interfere with or strengthen each other is semantic relatedness. Relatedness has been shown to retroactively boost initial memory and increase the interdependence between earlier and more recent experiences in memory. Here, we investigated the converse relationship of how relatedness proactively affects later memory for paired associates. In five experiments (N=1000 total), we varied the relatedness between initial and later cues, initial and later targets, or both. Across experiments and conditions, relatedness profoundly benefited later-learned memories – in some conditions, low relatedness reliably produced proactive interference (versus a control condition) while high relatedness produced proactive facilitation within the same experiment. Additionally, relatedness also accelerated learning and increased interdependence between initial and later-learned pairs. In sum, we demonstrate the robust effects of relatedness in scaffolding memory for recently learned information and creating strong integrative links with prior experiences.
-
- Neuroscience
Disentangling the evolution mysteries of the human brain has always been an imperative endeavor in neuroscience. Although many previous comparative studies revealed genetic, brain structural and connectivity distinctness between human and other nonhuman primates, the brain evolutional mechanism is still largely unclear. Here, we proposed to embed the brain anatomy of human and macaque in the developmental chronological axis to construct cross-species predictive model to quantitatively characterize brain evolution using two large public human and macaque datasets. We observed that applying the trained models within-species could well predict the chronological age. Interestingly, we found the model trained in macaque showed a higher accuracy in predicting the chronological age of human than the model trained in human in predicting the chronological age of macaque. The cross-application of the trained model introduced an individual brain cross-species age gap index to quantify the cross-species discrepancy along the temporal axis of brain development and was found to be associated with the behavioral performance in visual acuity test and picture vocabulary test in human. Taken together, our study situated the cross-species brain development along the chronological axis, which highlighted the disproportionately anatomical development in human brain to extend our understanding of the potential evolutionary effects.