The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment

  1. Shaun S Sanders  Is a corresponding author
  2. Luiselys M Hernandez
  3. Heun Soh
  4. Santi Karnam
  5. Randall S Walikonis
  6. Anastasios V Tzingounis
  7. Gareth M Thomas  Is a corresponding author
  1. University of Guelph, Canada
  2. Temple University School of Medicine, United States
  3. University of Connecticut, United States

Abstract

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type I PDZ domain-containing proteins. However, ZDHHC14's neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the Axon Initial Segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14's importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for all figures in the source data excel file.

Article and author information

Author details

  1. Shaun S Sanders

    Molecular and Cellular Biology, University of Guelph, Guelph, Canada
    For correspondence
    ssande03@uoguelph.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9661-141X
  2. Luiselys M Hernandez

    Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Heun Soh

    Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Santi Karnam

    Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Randall S Walikonis

    Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anastasios V Tzingounis

    Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4605-3437
  7. Gareth M Thomas

    Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
    For correspondence
    gareth.thomas@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3183-8431

Funding

Brody Family Medical Trust Fund Fellowship

  • Shaun S Sanders

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4939) of Temple University.

Version history

  1. Received: February 14, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 13, 2020 (version 1)
  4. Version of Record published: November 24, 2020 (version 2)

Copyright

© 2020, Sanders et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,545
    views
  • 264
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shaun S Sanders
  2. Luiselys M Hernandez
  3. Heun Soh
  4. Santi Karnam
  5. Randall S Walikonis
  6. Anastasios V Tzingounis
  7. Gareth M Thomas
(2020)
The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment
eLife 9:e56058.
https://doi.org/10.7554/eLife.56058

Share this article

https://doi.org/10.7554/eLife.56058

Further reading

    1. Neuroscience
    Alyssa D Huff, Marlusa Karlen-Amarante ... Jan-Marino Ramirez
    Research Advance

    Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic–cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.

    1. Neuroscience
    Olujolagbe Layinka, Luca D Hargitai ... Florence YN Leung
    Feature Article

    Improving our understanding of autism, ADHD, dyslexia and other neurodevelopmental conditions requires collaborations between genetics, psychiatry, the social sciences and other fields of research.