The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment

  1. Shaun S Sanders  Is a corresponding author
  2. Luiselys M Hernandez
  3. Heun Soh
  4. Santi Karnam
  5. Randall S Walikonis
  6. Anastasios V Tzingounis
  7. Gareth M Thomas  Is a corresponding author
  1. University of Guelph, Canada
  2. Temple University School of Medicine, United States
  3. University of Connecticut, United States

Abstract

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type I PDZ domain-containing proteins. However, ZDHHC14's neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the Axon Initial Segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14's importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for all figures in the source data excel file.

Article and author information

Author details

  1. Shaun S Sanders

    Molecular and Cellular Biology, University of Guelph, Guelph, Canada
    For correspondence
    ssande03@uoguelph.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9661-141X
  2. Luiselys M Hernandez

    Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Heun Soh

    Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Santi Karnam

    Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Randall S Walikonis

    Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anastasios V Tzingounis

    Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4605-3437
  7. Gareth M Thomas

    Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
    For correspondence
    gareth.thomas@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3183-8431

Funding

Brody Family Medical Trust Fund Fellowship

  • Shaun S Sanders

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4939) of Temple University.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Version history

  1. Received: February 14, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 13, 2020 (version 1)
  4. Version of Record published: November 24, 2020 (version 2)

Copyright

© 2020, Sanders et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,393
    Page views
  • 249
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shaun S Sanders
  2. Luiselys M Hernandez
  3. Heun Soh
  4. Santi Karnam
  5. Randall S Walikonis
  6. Anastasios V Tzingounis
  7. Gareth M Thomas
(2020)
The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment
eLife 9:e56058.
https://doi.org/10.7554/eLife.56058

Further reading

    1. Neuroscience
    Amanda J González Segarra, Gina Pontes ... Kristin Scott
    Research Article

    Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.

    1. Neuroscience
    Lucas Y Tian, Timothy L Warren ... Michael S Brainard
    Research Article

    Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.