Growth factor-mediated coupling between lineage size and cell fate choice underlies robustness of mammalian development

  1. Nestor Saiz  Is a corresponding author
  2. Laura Mora-Bitria
  3. Shahadat Rahman
  4. Hannah George
  5. Jeremy Herder
  6. Jordi Garcia-Ojalvo  Is a corresponding author
  7. Anna-Katerina Hadjantonakis  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States
  2. Universitat Pompeu Fabra, Spain

Abstract

Precise control and maintenance of population size is fundamental for organismal development and homeostasis. The three cell types of the mammalian blastocyst are generated in precise proportions over a short time, suggesting a mechanism to ensure a reproducible outcome. We developed a minimal mathematical model demonstrating growth factor signaling is sufficient to guarantee this robustness and which anticipates an embryo's response to perturbations in lineage composition. Addition of lineage-restricted cells both in vivo and in silico, causes a shift of the fate of progenitors away from the supernumerary cell type, while eliminating cells using laser ablation biases the specification of progenitors towards the targeted cell type. Finally, FGF4 couples fate decisions to lineage composition through changes in local growth factor concentration, providing a basis for the regulative abilities of the early mammalian embryo whereby fate decisions are coordinated at the population level to robustly generate tissues in the right proportions.

Data availability

All image data processing was done in R version 3.4.2, using RStudio as an interactive development environment. All processed data as well as the code used to transform data and classify cells is available at https://github.com/nestorsaiz/saiz-et-al_2020 and upon request.All raw confocal images and data tables will be freely available on Figshare with DOI 10.6084/m9.figshare.c.4736507.Code for phase-plane analysis and modeling is available at https://github.com/jgojalvo/EmbryoRobustness.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nestor Saiz

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    saizaren@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0637-791X
  2. Laura Mora-Bitria

    Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Shahadat Rahman

    Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3424-6768
  4. Hannah George

    Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeremy Herder

    Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jordi Garcia-Ojalvo

    Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    For correspondence
    jordi.g.ojalvo@upf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3716-7520
  7. Anna-Katerina Hadjantonakis

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    hadj@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7580-5124

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01-HD094868)

  • Anna-Katerina Hadjantonakis

National Institute of Diabetes and Digestive and Kidney Diseases (R01-DK084391)

  • Anna-Katerina Hadjantonakis

National Cancer Institute (P30-CA008748)

  • Anna-Katerina Hadjantonakis

Spanish Ministry of Science, Innovation and Universities (PGC2018-101251-B-I00)

  • Jordi Garcia-Ojalvo

Spanish Ministry of Science, Innovation and Universities (CEX2018-000792-M)

  • Jordi Garcia-Ojalvo

ICREA

  • Jordi Garcia-Ojalvo

STARR Foundation Tri-Institutional Stem Cell Postdoctoral fellowship

  • Nestor Saiz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elizabeth Robertson, University of Oxford, United Kingdom

Ethics

Animal experimentation: All animal work was approved by Memorial Sloan Kettering Cancer Center's Institutional Animal Care and Use Committee (Protocol 03-12-017, Hadjantonakis PI).

Version history

  1. Received: February 16, 2020
  2. Accepted: July 24, 2020
  3. Accepted Manuscript published: July 28, 2020 (version 1)
  4. Version of Record published: September 18, 2020 (version 2)
  5. Version of Record updated: October 13, 2020 (version 3)

Copyright

© 2020, Saiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,604
    views
  • 627
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nestor Saiz
  2. Laura Mora-Bitria
  3. Shahadat Rahman
  4. Hannah George
  5. Jeremy Herder
  6. Jordi Garcia-Ojalvo
  7. Anna-Katerina Hadjantonakis
(2020)
Growth factor-mediated coupling between lineage size and cell fate choice underlies robustness of mammalian development
eLife 9:e56079.
https://doi.org/10.7554/eLife.56079

Share this article

https://doi.org/10.7554/eLife.56079

Further reading

    1. Developmental Biology
    Yongfeng Luo, Ke Cao ... Wei Shi
    Research Article

    Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.

    1. Developmental Biology
    Youjia Guo, Tomohiro Kitano ... Haruhiko Siomi
    Research Article

    Once fertilized, mouse zygotes rapidly proceed to zygotic genome activation (ZGA), during which long terminal repeats (LTRs) of murine endogenous retroviruses with leucine tRNA primer (MERVL) are activated by a conserved homeodomain-containing transcription factor, DUX. However, Dux-knockout embryos produce fertile mice, suggesting that ZGA is redundantly driven by an unknown factor(s). Here we present multiple lines of evidence that the multicopy homeobox gene, Obox4, encodes a transcription factor that is highly expressed in mouse 2-cell embryos and redundantly drives ZGA. Genome-wide profiling revealed that OBOX4 specifically binds and activates MERVL LTRs as well as a subset of murine endogenous retroviruses with lysine tRNA primer (MERVK) LTRs. Depletion of Obox4 is tolerated by embryogenesis, whereas concomitant Obox4/Dux depletion markedly compromises embryonic development. Our study identified OBOX4 as a transcription factor that provides genetic redundancy to pre-implantation development.