1. Neuroscience
Download icon

Paranoia as a deficit in non-social belief updating

  1. Erin J Reed
  2. Stefan Uddenberg
  3. Praveen Suthaharan
  4. Christoph D Mathys
  5. Jane R Taylor
  6. Stephanie Mary Groman
  7. Philip R Corlett  Is a corresponding author
  1. Yale University, United States
  2. Princeton University, United States
  3. Scuola Internazionale Superiore di Studi Avanzati (SISSA), Italy
Research Article
  • Cited 2
  • Views 2,133
  • Annotations
Cite this article as: eLife 2020;9:e56345 doi: 10.7554/eLife.56345

Abstract

Paranoia is the belief that harm is intended by others. It may arise from selective pressures to infer and avoid social threats, particularly in ambiguous or changing circumstances. We propose that uncertainty may be sufficient to elicit learning differences in paranoid individuals, without social threat. We used reversal learning behavior and computational modeling to estimate belief updating across individuals with and without mental illness, online participants, and rats chronically exposed to methamphetamine, an elicitor of paranoia in humans. Paranoia is associated with a stronger prior on volatility, accompanied by elevated sensitivity to perceived changes in the task environment. Methamphetamine exposure in rats recapitulates this impaired uncertainty-driven belief updating and rigid anticipation of a volatile environment. Our work provides evidence of fundamental, domain-general learning differences in paranoid individuals. This paradigm enables further assessment of the interplay between uncertainty and belief-updating across individuals and species.

Article and author information

Author details

  1. Erin J Reed

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan Uddenberg

    Neuroscience Institute, Princeton University, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Praveen Suthaharan

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christoph D Mathys

    Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Jane R Taylor

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie Mary Groman

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5231-0612
  7. Philip R Corlett

    Psychiatry, Yale University, New Haven, United States
    For correspondence
    philip.corlett@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5368-1992

Funding

NIMH (R01MH12887)

  • Philip R Corlett

NIMH (R21MH120799-01)

  • Stephanie Mary Groman
  • Philip R Corlett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) at Yale University

Human subjects: Experiments were conducted at Yale University and the Connecticut Mental Health Center (New Haven, CT) in strict accordance with Yale University's Human Investigation Committee and Institutional Animal Care and Use Committee. Informed consent was provided by all research participants (Yale HIC# 2000022111: Beliefs and Personality Traits)

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Publication history

  1. Received: February 24, 2020
  2. Accepted: May 22, 2020
  3. Accepted Manuscript published: May 26, 2020 (version 1)
  4. Accepted Manuscript updated: May 27, 2020 (version 2)
  5. Version of Record published: June 30, 2020 (version 3)
  6. Version of Record updated: July 7, 2020 (version 4)

Copyright

© 2020, Reed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,133
    Page views
  • 259
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Lihong Zhan et al.
    Research Article Updated

    Microglia are the resident myeloid cells in the central nervous system (CNS). The majority of microglia rely on CSF1R signaling for survival. However, a small subset of microglia in mouse brains can survive without CSF1R signaling and reestablish the microglial homeostatic population after CSF1R signaling returns. Using single-cell transcriptomic analysis, we characterized the heterogeneous microglial populations under CSF1R inhibition, including microglia with reduced homeostatic markers and elevated markers of inflammatory chemokines and proliferation. Importantly, MAC2/Lgals3 was upregulated under CSF1R inhibition, and shared striking similarities with microglial progenitors in the yolk sac and immature microglia in early embryos. Lineage-tracing studies revealed that these MAC2+ cells were of microglial origin. MAC2+ microglia were also present in non-treated adult mouse brains and exhibited immature transcriptomic signatures indistinguishable from those that survived CSF1R inhibition, supporting the notion that MAC2+ progenitor-like cells are present among adult microglia.

    1. Developmental Biology
    2. Neuroscience
    Yasmine Cantaut-Belarif et al.
    Research Article Updated

    The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.