Paranoia as a deficit in non-social belief updating

  1. Erin J Reed
  2. Stefan Uddenberg
  3. Praveen Suthaharan
  4. Christoph D Mathys
  5. Jane R Taylor
  6. Stephanie Mary Groman
  7. Philip R Corlett  Is a corresponding author
  1. Yale University, United States
  2. Princeton University, United States
  3. Scuola Internazionale Superiore di Studi Avanzati (SISSA), Italy

Abstract

Paranoia is the belief that harm is intended by others. It may arise from selective pressures to infer and avoid social threats, particularly in ambiguous or changing circumstances. We propose that uncertainty may be sufficient to elicit learning differences in paranoid individuals, without social threat. We used reversal learning behavior and computational modeling to estimate belief updating across individuals with and without mental illness, online participants, and rats chronically exposed to methamphetamine, an elicitor of paranoia in humans. Paranoia is associated with a stronger prior on volatility, accompanied by elevated sensitivity to perceived changes in the task environment. Methamphetamine exposure in rats recapitulates this impaired uncertainty-driven belief updating and rigid anticipation of a volatile environment. Our work provides evidence of fundamental, domain-general learning differences in paranoid individuals. This paradigm enables further assessment of the interplay between uncertainty and belief-updating across individuals and species.

Data availability

Data are available on ModelDB83 (http://modeldb.yale.edu/258631) with accession code p2c8q74m. Figures 2-10 have associated raw data available. Code for the HGF toolbox v5.3.1 is freely available at https://translationalneuromodeling.github.io/tapas/.

Article and author information

Author details

  1. Erin J Reed

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan Uddenberg

    Neuroscience Institute, Princeton University, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Praveen Suthaharan

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christoph D Mathys

    Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Jane R Taylor

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie Mary Groman

    Psychiatry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5231-0612
  7. Philip R Corlett

    Psychiatry, Yale University, New Haven, United States
    For correspondence
    philip.corlett@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5368-1992

Funding

NIMH (R01MH12887)

  • Philip R Corlett

NIMH (R21MH120799-01)

  • Stephanie Mary Groman
  • Philip R Corlett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) at Yale University

Human subjects: Experiments were conducted at Yale University and the Connecticut Mental Health Center (New Haven, CT) in strict accordance with Yale University's Human Investigation Committee and Institutional Animal Care and Use Committee. Informed consent was provided by all research participants (Yale HIC# 2000022111: Beliefs and Personality Traits)

Copyright

© 2020, Reed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,757
    views
  • 829
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin J Reed
  2. Stefan Uddenberg
  3. Praveen Suthaharan
  4. Christoph D Mathys
  5. Jane R Taylor
  6. Stephanie Mary Groman
  7. Philip R Corlett
(2020)
Paranoia as a deficit in non-social belief updating
eLife 9:e56345.
https://doi.org/10.7554/eLife.56345

Share this article

https://doi.org/10.7554/eLife.56345

Further reading

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.

    1. Neuroscience
    Cameron T Ellis, Tristan S Yates ... Nicholas Turk-Browne
    Research Article

    Studying infant minds with movies is a promising way to increase engagement relative to traditional tasks. However, the spatial specificity and functional significance of movie-evoked activity in infants remains unclear. Here, we investigated what movies can reveal about the organization of the infant visual system. We collected fMRI data from 15 awake infants and toddlers aged 5–23 months who attentively watched a movie. The activity evoked by the movie reflected the functional profile of visual areas. Namely, homotopic areas from the two hemispheres responded similarly to the movie, whereas distinct areas responded dissimilarly, especially across dorsal and ventral visual cortex. Moreover, visual maps that typically require time-intensive and complicated retinotopic mapping could be predicted, albeit imprecisely, from movie-evoked activity in both data-driven analyses (i.e. independent component analysis) at the individual level and by using functional alignment into a common low-dimensional embedding to generalize across participants. These results suggest that the infant visual system is already structured to process dynamic, naturalistic information and that fine-grained cortical organization can be discovered from movie data.