Quantitative dissection of transcription in development yields evidence for transcription factor-driven chromatin accessibility

  1. Elizabeth Eck
  2. Jonathan Liu
  3. Maryam Kazemzadeh-Atoufi
  4. Sydney Ghoreishi
  5. Shelby A Blythe
  6. Hernan G Garcia  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Northwestern University, United States

Abstract

Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes chromatin accessibility and energy expenditure may call for a different framework. Here we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of hunchback by the activator Bicoid and the pioneer-like transcription factor Zelda in living Drosophila embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate hunchback transcription. Therefore, we explored a model where DNA accessibility is not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone acetylation, and found that this model can predict hunchback dynamics. Thus, our theory-experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory dynamics, a key step toward reaching a predictive understanding of developmental decision-making.

Data availability

Processed microscopy data have been deposited in Dryad (https://datadryad.org/stash/share/zakb7AqU2233pgWIs1mMAKyDiTQi4BXtnP0-Uu93xI0).

Article and author information

Author details

  1. Elizabeth Eck

    Biophysics, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonathan Liu

    Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0204-0105
  3. Maryam Kazemzadeh-Atoufi

    Materials Science and Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sydney Ghoreishi

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shelby A Blythe

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4986-2579
  6. Hernan G Garcia

    Molecular and Cell Biology, Physics, University of California, Berkeley, Berkeley, United States
    For correspondence
    hggarcia@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5212-3649

Funding

National Science Foundation (Graduate Student Fellowship)

  • Elizabeth Eck

National Institutes of Health (DP2 OD024541-01)

  • Hernan G Garcia

National Science Foundation (1652236)

  • Hernan G Garcia

University of California, Berkeley (Chancellor's Fellowship)

  • Elizabeth Eck

Department of Defense (Graduate Student Fellowship)

  • Jonathan Liu

Burroughs Wellcome Fund (Career Award)

  • Hernan G Garcia

Sloan Research Foundation

  • Hernan G Garcia

Human Frontiers Science Program

  • Hernan G Garcia

Searle Scholars Program

  • Hernan G Garcia

Shurl and Kay Curci Foundation

  • Hernan G Garcia

Hellman Foundation

  • Hernan G Garcia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Eck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,914
    views
  • 578
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth Eck
  2. Jonathan Liu
  3. Maryam Kazemzadeh-Atoufi
  4. Sydney Ghoreishi
  5. Shelby A Blythe
  6. Hernan G Garcia
(2020)
Quantitative dissection of transcription in development yields evidence for transcription factor-driven chromatin accessibility
eLife 9:e56429.
https://doi.org/10.7554/eLife.56429

Share this article

https://doi.org/10.7554/eLife.56429

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Iksoo Chang, Taegon Chung, Sangyeol Kim
    Research Article

    Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system Caenorhabditis elegans for which the structural anatomical connectome was completely known recently. We evaluated how strongly the sinusoidal wave was transmitted between arbitrary two cells in the model network. The region of cell-pairs that are good at transmitting waves changed according to the wavenumber of the wave, for which we named a wavenumber-dependent transmission map. Also, we unraveled that (1) the transmission of all cell-pairs disappeared beyond a threshold wavenumber, (2) long distance and regular patterned transmission existed in the body-wall muscles part of the model network, and (3) major hub cell-pairs of the transmission were identified for many wavenumber conditions. A theoretical and computational model presented in this study provided fundamental insight for understanding how the multi-path constructive/destructive interference of the subthreshold oscillations propagating on electrically coupled neural networks could generate wavenumber-dependent synchronized rhythmic activity.

    1. Developmental Biology
    2. Physics of Living Systems
    Fridtjof Brauns, Nikolas H Claussen ... Boris I Shraiman
    Research Article

    Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.