Distinct neuronal populations contribute to trace conditioning and extinction learning in the hippocampal CA1

Abstract

Trace conditioning and extinction learning depend on the hippocampus, but it remains unclear how neural activity in the hippocampus is modulated during these two different behavioral processes. To explore this question, we performed calcium imaging from a large number of individual CA1 neurons during both trace eye-blink conditioning and subsequent extinction learning in mice. Our findings reveal that distinct populations of CA1 cells contribute to trace conditioned learning versus extinction learning, as learning emerges. Furthermore, we examined network connectivity by calculating co-activity between CA1 neuron pairs and found that CA1 network connectivity patterns also differ between conditioning and extinction, even though the overall connectivity density remains constant. Together, our results demonstrate that distinct populations of hippocampal CA1 neurons, forming different sub-networks with unique connectivity patterns, encode different aspects of learning.

Data availability

All custom software will be made available on the Han Lab Github, and links are provided in the manuscript.All data generated during this study is included in the manuscript.

Article and author information

Author details

  1. Rebecca A Mount

    Biomedical Engineering Department, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8962-1641
  2. Sudiksha Sridhar

    Biomedical Engineering Department, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kyle R Hansen

    Biomedical Engineering Department, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2782-7289
  4. Ali I Mohammed

    Biomedical Engineering Department, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Moona E Abdulkerim

    Biomedical Engineering Department, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robb Kessel

    Biomedical Engineering Department, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bobak Nazer

    Electrical and Computer Engineering Department, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Howard J Gritton

    Biomedical Engineering Department, Boston University, Boston, United States
    For correspondence
    hgritton@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3194-3258
  9. Xue Han

    Department of Biomedical Engineering, Boston University, Boston, United States
    For correspondence
    xuehan@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3896-4609

Funding

National Science Foundation (CBET-1848029)

  • Xue Han

National Institutes of Health (1R01MH122971-01A1,1R21MH109941-01)

  • Xue Han

Boston University Dean's Catalyst Award

  • Xue Han

National Academy of Engineering

  • Xue Han

The Grainger Foundation, Inc.

  • Xue Han

National Science Foundation (DGE-1247312)

  • Kyle R Hansen

National Institutes of Health (F31 NS 105420)

  • Kyle R Hansen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the Boston University Institutional Animal Care and Use Committee (protocol #201800680), and all experiments were performed in accordance with the relevant guidelines and regulations.

Copyright

© 2021, Mount et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,868
    views
  • 359
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca A Mount
  2. Sudiksha Sridhar
  3. Kyle R Hansen
  4. Ali I Mohammed
  5. Moona E Abdulkerim
  6. Robb Kessel
  7. Bobak Nazer
  8. Howard J Gritton
  9. Xue Han
(2021)
Distinct neuronal populations contribute to trace conditioning and extinction learning in the hippocampal CA1
eLife 10:e56491.
https://doi.org/10.7554/eLife.56491

Share this article

https://doi.org/10.7554/eLife.56491

Further reading

    1. Neuroscience
    Christopher H Chen, Zhiyi Yao ... Wade G Regehr
    Short Report

    Purkinje cells (PCs) primarily project to cerebellar nuclei but also directly innervate the brainstem. Some PC-brainstem projections have been described previously, but most have not been thoroughly characterized. Here, we use a PC-specific cre line to anatomically and electrophysiologically characterize PC projections to the brainstem. PC synapses are surprisingly widespread, with the highest densities found in the vestibular and parabrachial nuclei. However, there are pronounced regional differences in synaptic densities within both the vestibular and parabrachial nuclei. Large optogenetically evoked PC-IPSCs are preferentially observed in subregions with the highest densities of putative PC boutons, suggesting that PCs selectively influence these areas and the behaviors they regulate. Unexpectedly, the pontine central gray and nearby subnuclei also contained a low density of putative PC boutons, and large PC-IPSCs are observed in a small fraction of cells. We combined electrophysiological recordings with immunohistochemistry to assess the molecular identities of two potential PC targets: PC synapses onto mesencephalic trigeminal neurons were not observed even though these cells are in close proximity to PC boutons; PC synapses onto locus coeruleus neurons are exceedingly rare or absent, even though previous studies concluded that PCs are a major input to these neurons. The availability of a highly selective cre line for PCs allowed us to study functional synapses, while avoiding complications that can accompany the use of viral approaches. We conclude that PCs directly innervate numerous brainstem nuclei, and in many nuclei they strongly inhibit a small fraction of cells. This suggests that PCs selectively target cell types with specific behavioral roles in the brainstem.