DAZL mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors

Abstract

Fertility across metazoa requires the germline-specific DAZ family of RNA-binding proteins. Here we examine whether DAZL directly regulates progenitor spermatogonia using a conditional genetic mouse model and in vivo biochemical approaches combined with chemical synchronization of spermatogenesis. We find that the absence of Dazl impairs both expansion and differentiation of the spermatogonial progenitor population. In undifferentiated spermatogonia, DAZL binds the 3' UTRs of ~2,500 protein-coding genes. Some targets are known regulators of spermatogonial proliferation and differentiation while others are broadly expressed, dosage-sensitive factors that control transcription and RNA metabolism. DAZL binds 3' UTR sites conserved across vertebrates at a UGUU(U/A) motif. By assessing ribosome occupancy in undifferentiated spermatogonia, we find that DAZL increases translation of its targets. In total, DAZL orchestrates a broad translational program that amplifies protein levels of key spermatogonial and gene regulatory factors to promote the expansion and differentiation of progenitor spermatogonia.

Data availability

All sequencing data generated in this study are available at NCBI Gene Expression Omnibus accession number GSE145177

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Maria M Mikedis

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuting Fan

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter K Nicholls

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5540-442X
  4. Tsutomu Endo

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily K Jackson

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah A Cobb

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dirk G de Rooij

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3932-4419
  8. David C Page

    Whitehead Institute, Cambridge, United States
    For correspondence
    dcpage@wi.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9920-3411

Funding

Howard Hughes Medical Institute (Page laboratory)

  • David C Page

Lalor Foundation (Postdoctoral fellowship)

  • Maria M Mikedis

Eunice Kennedy Shriver National Institute of Child Health and Human Development (F32HD093391)

  • Maria M Mikedis

National Natural Science Foundation of China (81471507)

  • Yuting Fan

National Key Research and Development Program of China (2017YFC1001600)

  • Yuting Fan

Hope Funds for Cancer Research (HFCR-15-06-06)

  • Peter K Nicholls

National Health and Medical Research Council (GNT1053776)

  • Peter K Nicholls

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving mice were performed in accordance with the guidelines of the Massachusetts Institute of Technology (MIT) Division of Comparative Medicine, which is overseen by MIT's Institutional Animal Care and Use Committee (IACUC). The animal care program at MIT/Whitehead Institute is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International (AAALAC), and meets or exceeds the standards of AAALAC as detailed in the Guide for the Care and Use of Laboratory Animals. The MIT IACUC approved this research (no. 0617-059-20).

Copyright

© 2020, Mikedis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,673
    views
  • 406
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria M Mikedis
  2. Yuting Fan
  3. Peter K Nicholls
  4. Tsutomu Endo
  5. Emily K Jackson
  6. Sarah A Cobb
  7. Dirk G de Rooij
  8. David C Page
(2020)
DAZL mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors
eLife 9:e56523.
https://doi.org/10.7554/eLife.56523

Share this article

https://doi.org/10.7554/eLife.56523

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.