Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver

Abstract

The classical drug development pipeline necessitates studies using animal models of human disease to gauge future efficacy in humans, however there is a low conversion rate from success in animals to humans. Non-alcoholic fatty liver disease (NAFLD) is a complex chronic disease without any established therapies and a major field of animal research. We performed a meta-analysis with meta-regression of 603 interventional rodent studies (10,364 animals) in NAFLD to assess which variables influenced treatment response. Weight loss and alleviation of insulin resistance were consistently associated with improvement in NAFLD. Multiple drug classes that do not affect weight in humans caused weight loss in animals. Other study design variables, such as age of animals and dietary composition, influenced the magnitude of treatment effect. Publication bias may have increased effect estimates by 37-79%. These findings help to explain the challenge of reproducibility and translation within the field of metabolism.

Data availability

The raw dataset used for analysis, including references to individual studies, are available Figure 1 - Source Data and deposited in the Dryad repository at https://doi.org/10.5061/dryad.pzgmsbcgc.R code used for analysis are available in Supplementary Data.Source data files have been provided for Figures 2-8.

The following data sets were generated

Article and author information

Author details

  1. Harriet Hunter

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Dana de Gracia Hahn

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Amedine Duret

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu Ri Im

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Qinrong Cheah

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiawen Dong

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Madison Fairey

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Clarissa Hjalmarsson

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Alice Li

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Hong Kai Lim

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7266-7790
  11. Lorcan McKeown

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Claudia-Gabriela Mitrofan

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Raunak Rao

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6954-575X
  14. Mrudula Utukuri

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1510-469X
  15. Ian A Rowe

    Leeds Institute for Medical Research & Leeds Institute for Data Analytics, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Jake P Mann

    Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    jm2032@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4711-9215

Funding

Wellcome Trust (216329/Z/19/Z)

  • Jake P Mann

European Society for Paediatric Research (Young Investigator Start-Up Grant)

  • Jake P Mann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Version history

  1. Received: March 3, 2020
  2. Accepted: October 15, 2020
  3. Accepted Manuscript published: October 16, 2020 (version 1)
  4. Version of Record published: November 6, 2020 (version 2)

Copyright

© 2020, Hunter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,626
    Page views
  • 213
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Harriet Hunter
  2. Dana de Gracia Hahn
  3. Amedine Duret
  4. Yu Ri Im
  5. Qinrong Cheah
  6. Jiawen Dong
  7. Madison Fairey
  8. Clarissa Hjalmarsson
  9. Alice Li
  10. Hong Kai Lim
  11. Lorcan McKeown
  12. Claudia-Gabriela Mitrofan
  13. Raunak Rao
  14. Mrudula Utukuri
  15. Ian A Rowe
  16. Jake P Mann
(2020)
Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver
eLife 9:e56573.
https://doi.org/10.7554/eLife.56573

Further reading

    1. Medicine
    Luyang Cao, Lixiang Ma ... Jingsong Xu
    Research Article

    Billions of apoptotic cells are removed daily in a human adult by professional phagocytes (e.g. macrophages) and neighboring nonprofessional phagocytes (e.g. stromal cells). Despite being a type of professional phagocyte, neutrophils are thought to be excluded from apoptotic sites to avoid tissue inflammation. Here, we report a fundamental and unexpected role of neutrophils as the predominant phagocyte responsible for the clearance of apoptotic hepatic cells in the steady state. In contrast to the engulfment of dead cells by macrophages, neutrophils burrowed directly into apoptotic hepatocytes, a process we term perforocytosis, and ingested the effete cells from the inside. The depletion of neutrophils caused defective removal of apoptotic bodies, induced tissue injury in the mouse liver, and led to the generation of autoantibodies. Human autoimmune liver disease showed similar defects in the neutrophil-mediated clearance of apoptotic hepatic cells. Hence, neutrophils possess a specialized immunologically silent mechanism for the clearance of apoptotic hepatocytes through perforocytosis, and defects in this key housekeeping function of neutrophils contribute to the genesis of autoimmune liver disease.

    1. Medicine
    Hong Zheng, Qianjin Li ... Cheng-Kui Qu
    Research Article

    While mitochondria in different tissues have distinct preferences for energy sources, they are flexible in utilizing competing substrates for metabolism according to physiological and nutritional circumstances. However, the regulatory mechanisms and significance of metabolic flexibility are not completely understood. Here, we report that the deletion of Ptpmt1, a mitochondria-based phosphatase, critically alters mitochondrial fuel selection – the utilization of pyruvate, a key mitochondrial substrate derived from glucose (the major simple carbohydrate), is inhibited, whereas the fatty acid utilization is enhanced. Ptpmt1 knockout does not impact the development of the skeletal muscle or heart. However, the metabolic inflexibility ultimately leads to muscular atrophy, heart failure, and sudden death. Mechanistic analyses reveal that the prolonged substrate shift from carbohydrates to lipids causes oxidative stress and mitochondrial destruction, which in turn results in marked accumulation of lipids and profound damage in the knockout muscle cells and cardiomyocytes. Interestingly, Ptpmt1 deletion from the liver or adipose tissue does not generate any local or systemic defects. These findings suggest that Ptpmt1 plays an important role in maintaining mitochondrial flexibility and that their balanced utilization of carbohydrates and lipids is essential for both the skeletal muscle and the heart despite the two tissues having different preferred energy sources.