Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver

Abstract

The classical drug development pipeline necessitates studies using animal models of human disease to gauge future efficacy in humans, however there is a low conversion rate from success in animals to humans. Non-alcoholic fatty liver disease (NAFLD) is a complex chronic disease without any established therapies and a major field of animal research. We performed a meta-analysis with meta-regression of 603 interventional rodent studies (10,364 animals) in NAFLD to assess which variables influenced treatment response. Weight loss and alleviation of insulin resistance were consistently associated with improvement in NAFLD. Multiple drug classes that do not affect weight in humans caused weight loss in animals. Other study design variables, such as age of animals and dietary composition, influenced the magnitude of treatment effect. Publication bias may have increased effect estimates by 37-79%. These findings help to explain the challenge of reproducibility and translation within the field of metabolism.

Data availability

The raw dataset used for analysis, including references to individual studies, are available Figure 1 - Source Data and deposited in the Dryad repository at https://doi.org/10.5061/dryad.pzgmsbcgc.R code used for analysis are available in Supplementary Data.Source data files have been provided for Figures 2-8.

The following data sets were generated

Article and author information

Author details

  1. Harriet Hunter

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Dana de Gracia Hahn

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Amedine Duret

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu Ri Im

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Qinrong Cheah

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiawen Dong

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Madison Fairey

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Clarissa Hjalmarsson

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Alice Li

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Hong Kai Lim

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7266-7790
  11. Lorcan McKeown

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Claudia-Gabriela Mitrofan

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Raunak Rao

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6954-575X
  14. Mrudula Utukuri

    School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1510-469X
  15. Ian A Rowe

    Leeds Institute for Medical Research & Leeds Institute for Data Analytics, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Jake P Mann

    Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    jm2032@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4711-9215

Funding

Wellcome Trust (216329/Z/19/Z)

  • Jake P Mann

European Society for Paediatric Research (Young Investigator Start-Up Grant)

  • Jake P Mann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Hunter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,795
    views
  • 226
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Harriet Hunter
  2. Dana de Gracia Hahn
  3. Amedine Duret
  4. Yu Ri Im
  5. Qinrong Cheah
  6. Jiawen Dong
  7. Madison Fairey
  8. Clarissa Hjalmarsson
  9. Alice Li
  10. Hong Kai Lim
  11. Lorcan McKeown
  12. Claudia-Gabriela Mitrofan
  13. Raunak Rao
  14. Mrudula Utukuri
  15. Ian A Rowe
  16. Jake P Mann
(2020)
Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver
eLife 9:e56573.
https://doi.org/10.7554/eLife.56573

Share this article

https://doi.org/10.7554/eLife.56573

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Karen Giménez-Orenga, Eva Martín-Martínez ... Elisa Oltra
    Research Article

    Research of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM), two acquired chronic illnesses affecting mainly females, has failed to ascertain their frequent co-appearance and etiology. Despite prior detection of human endogenous retrovirus (HERV) activation in these diseases, the potential biomarker value of HERV expression profiles for their diagnosis, and the relationship of HERV expression profiles with patient immune systems and symptoms had remained unexplored. By using HERV-V3 high-density microarrays (including over 350k HERV elements and more than 1500 immune-related genes) to interrogate the transcriptomes of peripheral blood mononuclear cells from female patients diagnosed with ME/CFS, FM, or both, and matched healthy controls (n = 43), this study fills this gap of knowledge. Hierarchical clustering of HERV expression profiles strikingly allowed perfect participant assignment into four distinct groups: ME/CFS, FM, co-diagnosed, or healthy, pointing at a potent biomarker value of HERV expression profiles to differentiate between these hard-to-diagnose chronic syndromes. Differentially expressed HERV–immune–gene modules revealed unique profiles for each of the four study groups and highlighting decreased γδ T cells, and increased plasma and resting CD4 memory T cells, correlating with patient symptom severity in ME/CFS. Moreover, activation of HERV sequences coincided with enrichment of binding sequences targeted by transcription factors which recruit SETDB1 and TRIM28, two known epigenetic silencers of HERV, in ME/CFS, offering a mechanistic explanation for the findings. Unexpectedly, HERV expression profiles appeared minimally affected in co-diagnosed patients denoting a new nosological entity with low epigenetic impact, a seemingly relevant aspect for the diagnosis and treatment of this prevalent group of patients.

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.