Probabilistic, spinally-gated control of bladder pressure and autonomous micturition by Barrington's nucleus CRH neurons

  1. Hiroki Ito
  2. Anna C Sales  Is a corresponding author
  3. Christopher H Fry
  4. Anthony J Kanai
  5. Marcus J Drake
  6. Anthony E Pickering  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. University of Pittsburgh, United States

Abstract

Micturition requires precise control of bladder and urethral sphincter via parasympathetic, sympathetic and somatic motoneurons. This involves a spino-bulbospinal control circuit incorporating Barrington's nucleus in the pons (Barr). Ponto-spinal glutamatergic neurons that express corticotrophin-releasing hormone (CRH) form one of the largest Barr cell populations. BarrCRH neurons can generate bladder contractions, but it is unknown whether they act as a simple switch or provide a high-fidelity pre-parasympathetic motor drive and whether their activation can actually trigger voids. Combined opto- and chemo-genetic manipulations along with multisite extracellular recordings in urethane anaesthetised CRHCre mice show that BarrCRH neurons provide a probabilistic drive that generates co-ordinated voids or non-voiding contractions depending on the phase of the micturition cycle. CRH itself provides negative feedback regulation of this process. These findings inform a new inferential model of autonomous micturition and emphasise the importance of the state of the spinal gating circuit in the generation of voiding.

Data availability

The data generated during this study are included either in the manuscript, in supporting files, or in the dataset deposited at the University of Bristol Research Data Repository at DOI:10.5523/bris.20l920gl27ufi204brn8ilonsf uk/data/.

The following data sets were generated
    1. Pickering A
    2. Sales A
    3. Ito H
    (2019) Ito, Sales et al 2019 Example BarrCRH recordings and analysis / model code
    University of Bristol Research Data Repository DOI:10.5523/bris.20l920gl27ufi204brn8ilonsf uk/data/.

Article and author information

Author details

  1. Hiroki Ito

    School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna C Sales

    School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
    For correspondence
    anna.sales@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8585-3763
  3. Christopher H Fry

    School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Anthony J Kanai

    Department of Medicine, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marcus J Drake

    School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Anthony E Pickering

    School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
    For correspondence
    tony.pickering@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0345-0456

Funding

National Institutes of Health (R01 DK098361)

  • Christopher H Fry
  • Anthony J Kanai
  • Marcus J Drake
  • Anthony E Pickering

Wellcome (108899/Z/15)

  • Anna C Sales

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments and procedures conformed to the UK Animals (Scientific Procedures) Act 1986 and were approved by the University of Bristol Animal Welfare and Ethical review body. licence (PPL3003362).

Copyright

© 2020, Ito et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,991
    views
  • 344
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroki Ito
  2. Anna C Sales
  3. Christopher H Fry
  4. Anthony J Kanai
  5. Marcus J Drake
  6. Anthony E Pickering
(2020)
Probabilistic, spinally-gated control of bladder pressure and autonomous micturition by Barrington's nucleus CRH neurons
eLife 9:e56605.
https://doi.org/10.7554/eLife.56605

Share this article

https://doi.org/10.7554/eLife.56605

Further reading

    1. Neuroscience
    Mina Mišić, Noah Lee ... Herta Flor
    Research Article

    Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over 6- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.