Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest

  1. Amijai Saragovi
  2. Ifat Abramovitch
  3. Ibrahim Omar
  4. Eliran Arbib
  5. Ori Toker
  6. Eyal Gottlieb
  7. Michael Berger  Is a corresponding author
  1. Hebrew University, Israel
  2. Technion - Israel Institute of Technology, Israel
  3. Shaare Zedek Medical Center, Israel

Abstract

Systemic oxygen restriction (SOR) is prevalent in numerous clinical conditions, including chronic obstructive pulmonary disease (COPD),and is associated with increased susceptibility to viral infections. However, the influence of SOR on T cell immunity remains uncharacterized. Here we show the detrimental effect of hypoxia on mitochondrial-biogenesis in activated mouse CD8+ T cells. We find that low oxygen level diminishes CD8+ T cell viral response in vivo. We reveal that respiratory restriction inhibits ATP-dependent matrix processes that are critical for mitochondrial biogenesis. This respiratory restriction-mediated effect could be rescued by TCA cycle re-stimulation, which yielded increased mitochondrial matrix-localized ATP via substrate-level phosphorylation. Finally, we demonstrate that the hypoxia-arrested CD8+ viral response could be rescued in vivo through brief exposure to atmospheric oxygen pressure. Overall, these findings elucidate the detrimental effect of hypoxia on mitochondrial-biogenesis in activated CD8+ T cells, and suggest a new approach for reducing viral infections in COPD.

Data availability

Metabolic analysis data and Protein MS analysis have been deposited in OSF under DOI 10.17605/OSF.IO/JKMQF

The following data sets were generated

Article and author information

Author details

  1. Amijai Saragovi

    Immunology and Cancer Research, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Ifat Abramovitch

    The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Ibrahim Omar

    Immunology and Cancer Research, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Eliran Arbib

    Immunology and Cancer Research, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Ori Toker

    Department of Pediatrics, Allergy and Clinical Immunology Service, Shaare Zedek Medical Center, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Eyal Gottlieb

    The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Berger

    Immunology and Cancer Research, Hebrew University, Jerusalem, Israel
    For correspondence
    michaelb@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3469-0076

Funding

Israeli Science Foundation (Personal grant,1596/17)

  • Michael Berger

German Israeli Foundation for Scientific Research and Development (I-1474-414.13/2018)

  • Michael Berger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Satyajit Rath, Indian Institute of Science Education and Research (IISER), India

Ethics

Animal experimentation: This study was performed in strict accordance with the guidelines of the institutional ethics committee (AAALAC standard). The protocols were approved by the Committee on the Ethics of Animal Experiments of the Hebrew University (Ethics Committee - research number: MD-16-14863-1 and MD-18-15662-5). Every effort was made to minimize suffering.

Human subjects: Human blood samples were obtained via Shaare Zedek Medical Center Jerusalem, Helsinki committee approval number: 143/14

Version history

  1. Received: March 3, 2020
  2. Accepted: November 21, 2020
  3. Accepted Manuscript published: November 23, 2020 (version 1)
  4. Accepted Manuscript updated: November 24, 2020 (version 2)
  5. Version of Record published: December 10, 2020 (version 3)

Copyright

© 2020, Saragovi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,510
    Page views
  • 277
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amijai Saragovi
  2. Ifat Abramovitch
  3. Ibrahim Omar
  4. Eliran Arbib
  5. Ori Toker
  6. Eyal Gottlieb
  7. Michael Berger
(2020)
Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest
eLife 9:e56612.
https://doi.org/10.7554/eLife.56612

Share this article

https://doi.org/10.7554/eLife.56612

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yuting Zhang, Min Zhang ... Guojiang Chen
    Research Article

    Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.