ODELAM Rapid sequence-independent detection of drug resistance in isolates of Mycobacterium tuberculosis

  1. Thurston Herricks
  2. Magdalena Donczew  Is a corresponding author
  3. Fred D Mast
  4. Tige Rustad
  5. Robert Morrison
  6. Timothy R Sterling
  7. David R Sherman  Is a corresponding author
  8. John D Aitchison  Is a corresponding author
  1. Seattle Children's Research Institute, United States
  2. University of Washington, United States
  3. Vanderbilt University, United States

Abstract

Antimicrobial-resistant Mycobacterium tuberculosis (Mtb) causes over 200,000 deaths each year. Current assays of antimicrobial resistance need knowledge of mutations that confer drug resistance, or long periods of culture time to test growth under drug pressure. We present ODELAM (One-cell Doubling Evaluation of Living Arrays of Mycobacterium), a time-lapse microscopy-based method that observes individual cells growing into microcolonies. ODELAM enables rapid quantitative measures of growth kinetics in as little as 30 hours under a wide variety of environmental conditions. We demonstrate ODELAM's utility by identifying ofloxacin resistance in cultured clinical isolates of Mtb and benchmark its performance with standard minimum inhibitory concentration (MIC) assays. In Mtb isolate, ODELAM identified ofloxacin heteroresistance and identifies the presence of drug resistant colony forming units (CFUs) at 1 per 1000 CFUs in as little as 48 hours. ODELAM is a powerful new tool that can rapidly evaluate Mtb drug resistance in a laboratory setting.

Data availability

MATLAB data *.mat files and MATLAB *.m files utilized for generating figures in this submission are posted at Dryad. Additional source code has been made available at https://github.com/AitchisonLab/

The following data sets were generated

Article and author information

Author details

  1. Thurston Herricks

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0247-7967
  2. Magdalena Donczew

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    mdonczew@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Fred D Mast

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tige Rustad

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Morrison

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy R Sterling

    Division of Infectious Disease, Department of Medicine, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David R Sherman

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    dsherman@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. John D Aitchison

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    John.Aitchison@seattlechildrens.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9153-6497

Funding

National Institutes of Health (U19 AI135976)

  • David R Sherman
  • John D Aitchison

National Institutes of Health (U19 AI111276)

  • John D Aitchison

National Institutes of Health (R01 AI141953)

  • John D Aitchison

National Institutes of Health (P41 GM109824)

  • John D Aitchison

National Institutes of Health (R01 AI063200)

  • Timothy R Sterling

National Institutes of Health (R56 AI118361)

  • Timothy R Sterling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Herricks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,224
    views
  • 193
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thurston Herricks
  2. Magdalena Donczew
  3. Fred D Mast
  4. Tige Rustad
  5. Robert Morrison
  6. Timothy R Sterling
  7. David R Sherman
  8. John D Aitchison
(2020)
ODELAM Rapid sequence-independent detection of drug resistance in isolates of Mycobacterium tuberculosis
eLife 9:e56613.
https://doi.org/10.7554/eLife.56613

Share this article

https://doi.org/10.7554/eLife.56613

Further reading

    1. Microbiology and Infectious Disease
    Manuela C Aguirre-Botero, Olga Pacios ... Rogerio Amino
    Research Article

    Plasmodium sporozoites are inoculated into the skin during the bite of an infected mosquito. This motile stage invades cutaneous blood vessels to reach the liver and infect hepatocytes. The circumsporozoite protein (CSP) on the sporozoite surface is an important antigen targeted by protective antibodies (Abs) in immunoprophylaxis or elicited by vaccination. Antibody-mediated protection mainly unfolds during parasite skin migration, but rare and potent protective Abs additionally neutralize sporozoite in the liver. Here, using a rodent malaria model, microscopy and bioluminescence imaging, we show a late-neutralizing effect of 3D11 anti-CSP monoclonal antibody (mAb) in the liver. The need for several hours to eliminate parasites in the liver was associated with an accumulation of 3D11 effects, starting with the inhibition of sporozoite motility, sinusoidal extravasation, cell invasion, and terminating with the parasite killing inside the invaded cell. This late-neutralizing activity could be helpful to identify more potent therapeutic mAbs with stronger activity in the liver.

    1. Microbiology and Infectious Disease
    Julia A Hotinger, Ian W Campbell ... Matthew K Waldor
    Research Article

    Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen’s colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.