ODELAM Rapid sequence-independent detection of drug resistance in isolates of Mycobacterium tuberculosis

  1. Thurston Herricks
  2. Magdalena Donczew  Is a corresponding author
  3. Fred D Mast
  4. Tige Rustad
  5. Robert Morrison
  6. Timothy R Sterling
  7. David R Sherman  Is a corresponding author
  8. John D Aitchison  Is a corresponding author
  1. Seattle Children's Research Institute, United States
  2. University of Washington, United States
  3. Vanderbilt University, United States

Abstract

Antimicrobial-resistant Mycobacterium tuberculosis (Mtb) causes over 200,000 deaths each year. Current assays of antimicrobial resistance need knowledge of mutations that confer drug resistance, or long periods of culture time to test growth under drug pressure. We present ODELAM (One-cell Doubling Evaluation of Living Arrays of Mycobacterium), a time-lapse microscopy-based method that observes individual cells growing into microcolonies. ODELAM enables rapid quantitative measures of growth kinetics in as little as 30 hours under a wide variety of environmental conditions. We demonstrate ODELAM's utility by identifying ofloxacin resistance in cultured clinical isolates of Mtb and benchmark its performance with standard minimum inhibitory concentration (MIC) assays. In Mtb isolate, ODELAM identified ofloxacin heteroresistance and identifies the presence of drug resistant colony forming units (CFUs) at 1 per 1000 CFUs in as little as 48 hours. ODELAM is a powerful new tool that can rapidly evaluate Mtb drug resistance in a laboratory setting.

Data availability

MATLAB data *.mat files and MATLAB *.m files utilized for generating figures in this submission are posted at Dryad. Additional source code has been made available at https://github.com/AitchisonLab/

The following data sets were generated

Article and author information

Author details

  1. Thurston Herricks

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0247-7967
  2. Magdalena Donczew

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    mdonczew@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Fred D Mast

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tige Rustad

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Morrison

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy R Sterling

    Division of Infectious Disease, Department of Medicine, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David R Sherman

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    dsherman@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. John D Aitchison

    Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    John.Aitchison@seattlechildrens.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9153-6497

Funding

National Institutes of Health (U19 AI135976)

  • David R Sherman
  • John D Aitchison

National Institutes of Health (U19 AI111276)

  • John D Aitchison

National Institutes of Health (R01 AI141953)

  • John D Aitchison

National Institutes of Health (P41 GM109824)

  • John D Aitchison

National Institutes of Health (R01 AI063200)

  • Timothy R Sterling

National Institutes of Health (R56 AI118361)

  • Timothy R Sterling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Herricks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,215
    views
  • 193
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thurston Herricks
  2. Magdalena Donczew
  3. Fred D Mast
  4. Tige Rustad
  5. Robert Morrison
  6. Timothy R Sterling
  7. David R Sherman
  8. John D Aitchison
(2020)
ODELAM Rapid sequence-independent detection of drug resistance in isolates of Mycobacterium tuberculosis
eLife 9:e56613.
https://doi.org/10.7554/eLife.56613

Share this article

https://doi.org/10.7554/eLife.56613

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.

    1. Microbiology and Infectious Disease
    Hui Li, Jun Yang ... Bo Peng
    Research Article

    Non-inheritable antibiotic or phenotypic resistance ensures bacterial survival during antibiotic treatment. However, exogenous factors promoting phenotypic resistance are poorly defined. Here, we demonstrate that Vibrio alginolyticus are recalcitrant to killing by a broad spectrum of antibiotics under high magnesium. Functional metabolomics demonstrated that magnesium modulates fatty acid biosynthesis by increasing saturated fatty acid biosynthesis while decreasing unsaturated fatty acid production. Exogenous supplementation of unsaturated and saturated fatty acids increased and decreased bacterial susceptibility to antibiotics, respectively, confirming the role of fatty acids in antibiotic resistance. Functional lipidomics revealed that glycerophospholipid metabolism is the major metabolic pathway remodeled by magnesium, where phosphatidylethanolamine biosynthesis is reduced and phosphatidylglycerol production is increased. This process alters membrane composition, increasing membrane polarization, and decreasing permeability and fluidity, thereby reducing antibiotic uptake by V. alginolyticus. These findings suggest the presence of a previously unrecognized metabolic mechanism by which bacteria escape antibiotic killing through the use of an environmental factor.