Remyelination alters the pattern of myelin in the cerebral cortex
Abstract
Destruction of oligodendrocytes and myelin sheaths in cortical gray matter profoundly alters neural activity and is associated with cognitive disability in multiple sclerosis (MS). Myelin can be restored by regenerating oligodendrocytes from resident progenitors; however, it is not known whether regeneration restores the complex myelination patterns in cortical circuits. Here we performed time lapse in vivo two photon imaging in somatosensory cortex of adult mice to define the kinetics and specificity of myelin regeneration after acute oligodendrocyte ablation. These longitudinal studies revealed that the pattern of myelination in cortex changed dramatically after regeneration, as new oligodendrocytes were formed in different locations and new sheaths were often established along axon segments previously lacking myelin. Despite the dramatic increase in axonal territory available, oligodendrogenesis was persistently impaired in deeper cortical layers that experienced higher gliosis. Repeated reorganization of myelin patterns in MS may alter circuit function and contribute to cognitive decline.
Data availability
All data generated or analyzed in this study are included in the manuscript. Source code for analysis and figure generation are located at: https//github.com/clcall/Orthmann-Murphy_Call_etal_2020_Elife
Article and author information
Author details
Funding
Conrad N. Hilton Foundation
- Jennifer Orthmann-Murphy
National Multiple Sclerosis Society
- Jennifer Orthmann-Murphy
National Science Foundation (Graduate Research Fellowship)
- Cody L Call
National Science Foundation (Graduate Research Fellowship)
- Gian C Molina-Castro
National Institutes of Health (NS051509)
- Dwight E Bergles
National Institutes of Health (NS050274)
- Dwight E Bergles
National Institutes of Health (NS080153)
- Dwight E Bergles
Dr. Miriam and Sheldon G Adelson Medical Research Foundation
- Dwight E Bergles
National Multiple Sclerosis Society
- Peter A Calabresi
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal experimentation: This study was performed in accordance with the recommendations provided in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All experiments and procedures were approved by the Johns Hopkins Institutional Care and Use Committee (protocols: MO17M268, MO17M338). All surgery was performed under isoflurane anesthesia and every effort was made to minimize suffering.
Reviewing Editor
- Klaus-Armin Nave, Max Planck Institute of Experimental Medicine, Germany
Version history
- Received: March 4, 2020
- Accepted: May 22, 2020
- Accepted Manuscript published: May 27, 2020 (version 1)
- Version of Record published: June 12, 2020 (version 2)
- Version of Record updated: June 15, 2020 (version 3)
Copyright
© 2020, Orthmann-Murphy et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,027
- Page views
-
- 653
- Downloads
-
- 44
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, Hybrid Vocalization Localizer (HyVL), that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4–4.8 mm, 91% assigned) in localizing USVs, ~3× better than other systems, approaching the physical limits (mouse snout ~10 mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.
-
- Neuroscience
How does the human brain combine information across the eyes? It has been known for many years that cortical normalization mechanisms implement ‘ocularity invariance’: equalizing neural responses to spatial patterns presented either monocularly or binocularly. Here, we used a novel combination of electrophysiology, psychophysics, pupillometry, and computational modeling to ask whether this invariance also holds for flickering luminance stimuli with no spatial contrast. We find dramatic violations of ocularity invariance for these stimuli, both in the cortex and also in the subcortical pathways that govern pupil diameter. Specifically, we find substantial binocular facilitation in both pathways with the effect being strongest in the cortex. Near-linear binocular additivity (instead of ocularity invariance) was also found using a perceptual luminance matching task. Ocularity invariance is, therefore, not a ubiquitous feature of visual processing, and the brain appears to repurpose a generic normalization algorithm for different visual functions by adjusting the amount of interocular suppression.