Remyelination alters the pattern of myelin in the cerebral cortex

  1. Jennifer Orthmann-Murphy  Is a corresponding author
  2. Cody L Call
  3. Gian C Molina-Castro
  4. Yu Chen Hsieh
  5. Matthew N Rasband  Is a corresponding author
  6. Peter A Calabresi
  7. Dwight E Bergles  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Johns Hopkins University School of Medicine, United States
  3. Massachusetts General Hospital, United States
  4. Baylor College of Medicine, United States

Abstract

Destruction of oligodendrocytes and myelin sheaths in cortical gray matter profoundly alters neural activity and is associated with cognitive disability in multiple sclerosis (MS). Myelin can be restored by regenerating oligodendrocytes from resident progenitors; however, it is not known whether regeneration restores the complex myelination patterns in cortical circuits. Here we performed time lapse in vivo two photon imaging in somatosensory cortex of adult mice to define the kinetics and specificity of myelin regeneration after acute oligodendrocyte ablation. These longitudinal studies revealed that the pattern of myelination in cortex changed dramatically after regeneration, as new oligodendrocytes were formed in different locations and new sheaths were often established along axon segments previously lacking myelin. Despite the dramatic increase in axonal territory available, oligodendrogenesis was persistently impaired in deeper cortical layers that experienced higher gliosis. Repeated reorganization of myelin patterns in MS may alter circuit function and contribute to cognitive decline.

Data availability

All data generated or analyzed in this study are included in the manuscript. Source code for analysis and figure generation are located at: https//github.com/clcall/Orthmann-Murphy_Call_etal_2020_Elife

Article and author information

Author details

  1. Jennifer Orthmann-Murphy

    Neurology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    Jennifer.Orthmann-Murphy@pennmedicine.upenn.edu
    Competing interests
    No competing interests declared.
  2. Cody L Call

    Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2254-4298
  3. Gian C Molina-Castro

    Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0700-4042
  4. Yu Chen Hsieh

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Matthew N Rasband

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    For correspondence
    rasband@bcm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8184-2477
  6. Peter A Calabresi

    Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    Peter A Calabresi, PI on grants to JHU from Biogen and Annexon and has received consulting fees for serving on scientific advisory boards for Biogen and Disarm Therapeutics.1147.
  7. Dwight E Bergles

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    dbergles@jhmi.edu
    Competing interests
    Dwight E Bergles, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7133-7378

Funding

Conrad N. Hilton Foundation

  • Jennifer Orthmann-Murphy

National Multiple Sclerosis Society

  • Jennifer Orthmann-Murphy

National Science Foundation (Graduate Research Fellowship)

  • Cody L Call

National Science Foundation (Graduate Research Fellowship)

  • Gian C Molina-Castro

National Institutes of Health (NS051509)

  • Dwight E Bergles

National Institutes of Health (NS050274)

  • Dwight E Bergles

National Institutes of Health (NS080153)

  • Dwight E Bergles

Dr. Miriam and Sheldon G Adelson Medical Research Foundation

  • Dwight E Bergles

National Multiple Sclerosis Society

  • Peter A Calabresi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: This study was performed in accordance with the recommendations provided in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All experiments and procedures were approved by the Johns Hopkins Institutional Care and Use Committee (protocols: MO17M268, MO17M338). All surgery was performed under isoflurane anesthesia and every effort was made to minimize suffering.

Copyright

© 2020, Orthmann-Murphy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,772
    views
  • 733
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer Orthmann-Murphy
  2. Cody L Call
  3. Gian C Molina-Castro
  4. Yu Chen Hsieh
  5. Matthew N Rasband
  6. Peter A Calabresi
  7. Dwight E Bergles
(2020)
Remyelination alters the pattern of myelin in the cerebral cortex
eLife 9:e56621.
https://doi.org/10.7554/eLife.56621

Share this article

https://doi.org/10.7554/eLife.56621

Further reading

    1. Neuroscience
    Mina Mišić, Noah Lee ... Herta Flor
    Research Article

    Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over 6- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.

    1. Neuroscience
    Lian Hollander-Cohen, Omer Cohen ... Berta Levavi-Sivan
    Research Article

    Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view. Here, we reveal that the satiety hormone cholecystokinin (CCK) is the primary regulator of this axis in zebrafish. We found that FSH cells express a CCK receptor, and our findings demonstrate that mutating this receptor results in a severe hindrance to ovarian development. Additionally, it causes a complete shutdown of both gonadotropins secretion. Using in-vivo and ex-vivo calcium imaging of gonadotrophs, we show that GnRH predominantly activates LH cells, whereas FSH cells respond to CCK stimulation, designating CCK as the bona fide FSH secretagogue. These findings indicate that the control of gametogenesis in fish was placed under different neural circuits, that are gated by CCK.