1. Microbiology and Infectious Disease
Download icon

Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii

Research Article
  • Cited 4
  • Views 1,382
  • Annotations
Cite this article as: eLife 2020;9:e56635 doi: 10.7554/eLife.56635

Abstract

The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule-organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid.

Article and author information

Author details

  1. Nicolò Tosetti

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  2. Nicolas Dos Santos Pacheco

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1959-194X
  3. Eloïse Bertiaux

    Department of Cell Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  4. Bohumil Maco

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  5. Lorène Bournonville

    Department of Cell Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  6. Virginie Hamel

    Department of Cell Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  7. Paul Guichard

    Department of Cell Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0363-1049
  8. Dominique Soldati-Favre

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    For correspondence
    Dominique.Soldati-Favre@unige.ch
    Competing interests
    Dominique Soldati-Favre, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4156-2109

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_185325 and PP00P3_187198)

  • Dominique Soldati-Favre

H2020 European Research Council (695596 and 695596)

  • Dominique Soldati-Favre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olivier Silvie, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, France

Publication history

  1. Received: March 4, 2020
  2. Accepted: May 6, 2020
  3. Accepted Manuscript published: May 7, 2020 (version 1)
  4. Version of Record published: May 15, 2020 (version 2)

Copyright

© 2020, Tosetti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,382
    Page views
  • 267
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Martin Steen Mortensen et al.
    Research Article

    Early-life microbiota has been linked to the development of chronic inflammatory diseases. It has been hypothesized that maternal vaginal microbiota is an important initial seeding source and therefore might have lifelong effects on disease risk. To understand maternal vaginal microbiota’s role in seeding the child’s microbiota and the extent of delivery mode-dependent transmission, we studied 665 mother–child dyads from the COPSAC2010 cohort. The maternal vaginal microbiota was evaluated twice in the third trimester and compared with the children’s fecal (at 1 week, 1 month, and 1 year of age) and airway microbiota (at 1 week, 1 month, and 3 months). Based on the concept of weighted transfer ratios (WTRs), we have identified bacterial orders for which the WTR displays patterns indicate persistent or transient transfer from the maternal vaginal microbiome, as well as orders that are shared at later time points independent of delivery mode, indicating a common reservoir.

    1. Microbiology and Infectious Disease
    Eva Liliane Ujeneza et al.
    Research Article

    Long-term effects of the growing population of HIV-treated people in Southern Africa on individuals and the public health sector at large are not yet understood. This study proposes a novel 'ratio' model that relates CD4+ T-cell counts of HIV-infected individuals to the CD4+ count reference values from healthy populations. We use mixed-effects regression to fit the model to data from 1,616 children (median age 4.3 years at ART initiation) and 14,542 adults (median age 36 years at ART initiation). We found that the scaled carrying capacity, maximum CD4+ count relative to an HIV-negative individual of similar age, and baseline scaled CD4+ counts were closer to healthy values in children than in adults. Post-ART initiation, CD4+ growth rate was inversely correlated with baseline CD4+ T-cell counts, and consequently higher in adults than children. Our results highlight the impacts of age on dynamics of the immune system of healthy and HIV-infected individuals.