Abstract

The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule-organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid.

Data availability

All data generated or analysed during this study are included in the manuscript and supplementary file 1

Article and author information

Author details

  1. Nicolò Tosetti

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  2. Nicolas Dos Santos Pacheco

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1959-194X
  3. Eloïse Bertiaux

    Department of Cell Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  4. Bohumil Maco

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  5. Lorène Bournonville

    Department of Cell Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  6. Virginie Hamel

    Department of Cell Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  7. Paul Guichard

    Department of Cell Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0363-1049
  8. Dominique Soldati-Favre

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    For correspondence
    Dominique.Soldati-Favre@unige.ch
    Competing interests
    Dominique Soldati-Favre, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4156-2109

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_185325 and PP00P3_187198)

  • Dominique Soldati-Favre

H2020 European Research Council (695596 and 695596)

  • Dominique Soldati-Favre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Tosetti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,618
    views
  • 476
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolò Tosetti
  2. Nicolas Dos Santos Pacheco
  3. Eloïse Bertiaux
  4. Bohumil Maco
  5. Lorène Bournonville
  6. Virginie Hamel
  7. Paul Guichard
  8. Dominique Soldati-Favre
(2020)
Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii
eLife 9:e56635.
https://doi.org/10.7554/eLife.56635

Share this article

https://doi.org/10.7554/eLife.56635

Further reading

    1. Microbiology and Infectious Disease
    Louise Tzung-Harn Hsieh, Belinda S Hall ... Rachel E Simmonds
    Research Article

    The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone’s effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.

    1. Microbiology and Infectious Disease
    Xin Ma, Meng Li ... Xinyan Han
    Research Article

    As the largest mucosal surface, the gut has built a physical, chemical, microbial, and immune barrier to protect the body against pathogen invasion. The disturbance of gut microbiota aggravates pathogenic bacteria invasion and gut barrier injury. Fecal microbiota transplantation (FMT) is a promising treatment for microbiome-related disorders, where beneficial strain engraftment is a significant factor influencing FMT outcomes. The aim of this research was to explore the effect of FMT on antibiotic-induced microbiome-disordered (AIMD) models infected with enterotoxigenic Escherichia coli (ETEC). We used piglet, mouse, and intestinal organoid models to explore the protective effects and mechanisms of FMT on ETEC infection. The results showed that FMT regulated gut microbiota and enhanced the protection of AIMD piglets against ETEC K88 challenge, as demonstrated by reduced intestinal pathogen colonization and alleviated gut barrier injury. Akkermansia muciniphila (A. muciniphila) and Bacteroides fragilis (B. fragilis) were identified as two strains that may play key roles in FMT. We further investigated the alleviatory effects of these two strains on ETEC infection in the AIMD mice model, which revealed that A. muciniphila and B. fragilis relieved ETEC-induced intestinal inflammation by maintaining the proportion of Treg/Th17 cells and epithelial damage by moderately activating the Wnt/β-catenin signaling pathway, while the effect of A. muciniphila was better than B. fragilis. We, therefore, identified whether A. muciniphila protected against ETEC infection using basal-out and apical-out intestinal organoid models. A. muciniphila did protect the intestinal stem cells and stimulate the proliferation and differentiation of intestinal epithelium, and the protective effects of A. muciniphila were reversed by Wnt inhibitor. FMT alleviated ETEC-induced gut barrier injury and intestinal inflammation in the AIMD model. A. muciniphila was identified as a key strain in FMT to promote the proliferation and differentiation of intestinal stem cells by mediating the Wnt/β-catenin signaling pathway.