Corticothalamic gating of population auditory thalamocortical transmission in mouse

  1. Baher A Ibrahim
  2. Caitlin A Murphy
  3. Georgiy Yudintsev
  4. Yoshitaka Shinagawa
  5. Matthew I Banks
  6. Daniel A Llano  Is a corresponding author
  1. University of Illinois at Urbana Champaign, United States
  2. University of Wisconsin-Madison, United States
  3. University of Illinois at Urbana-Champaign, United States

Abstract

The mechanisms that govern thalamocortical transmission are poorly understood. Recent data have shown that sensory stimuli elicit activity in ensembles of cortical neurons that recapitulate stereotyped spontaneous activity patterns. Here, we elucidate a possible mechanism by which gating of patterned population cortical activity occurs. In this study, sensory-evoked all-or-none cortical population responses were observed in the mouse auditory cortex in vivo and similar stochastic cortical responses were observed in a colliculo-thalamocortical brain slice preparation. Cortical responses were associated with decreases in auditory thalamic synaptic inhibition and increases in thalamic synchrony. Silencing of corticothalamic neurons in layer 6 (but not layer 5) or the thalamic reticular nucleus linearized the cortical responses, suggesting that layer 6 corticothalamic feedback via the thalamic reticular nucleus was responsible for gating stochastic cortical population responses. These data implicate a corticothalamic-thalamic reticular nucleus circuit that modifies thalamic neuronal synchronization to recruit populations of cortical neurons for sensory representations.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, Figure 2, Figure 2-figure supplement 2, Figure 2-figure supplement 6, Figure 3, Figure 4, Figure 5, Figure 6, Figure 6-figure supplement 1.The datasets are available at Dryad under a DOI (doi:10.5061/dryad.qrfj6q5c4).

The following data sets were generated

Article and author information

Author details

  1. Baher A Ibrahim

    1Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0062-7589
  2. Caitlin A Murphy

    Department of Anesthesiology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6319-9470
  3. Georgiy Yudintsev

    Neuroscience Program, University of Illinois at Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yoshitaka Shinagawa

    University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew I Banks

    Department of Anesthesiology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel A Llano

    University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    d-llano@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0933-1837

Funding

NIDCD (R01DC013073)

  • Daniel A Llano

NIDCD (R21DC014765)

  • Daniel A Llano

NSF (1515587)

  • Daniel A Llano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#18236) of the University of Illinois at Urbana-Champaign. All surgery was performed under ketamine/xylazine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: March 5, 2020
  2. Accepted: May 23, 2021
  3. Accepted Manuscript published: May 24, 2021 (version 1)
  4. Version of Record published: June 8, 2021 (version 2)

Copyright

© 2021, Ibrahim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,742
    views
  • 254
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Baher A Ibrahim
  2. Caitlin A Murphy
  3. Georgiy Yudintsev
  4. Yoshitaka Shinagawa
  5. Matthew I Banks
  6. Daniel A Llano
(2021)
Corticothalamic gating of population auditory thalamocortical transmission in mouse
eLife 10:e56645.
https://doi.org/10.7554/eLife.56645

Share this article

https://doi.org/10.7554/eLife.56645

Further reading

    1. Neuroscience
    John J Maurer, Alexandra Lin ... Shinjae Chung
    Research Article

    Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.

    1. Neuroscience
    Zilu Liang, Simeng Wu ... Chao Liu
    Research Article

    People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a ‘social cognitive map’ organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.