CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation

  1. Joan Manils
  2. Louise V Webb
  3. Ashleigh Howes
  4. Julia Janzen
  5. Stefan Boeing
  6. Anne M Bowcock  Is a corresponding author
  7. Steven C Ley  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. Imperial College London, United Kingdom
  3. Icahn School of Medicine at Mount Sinai, United States

Abstract

To investigate how the CARD14E138A psoriasis-associated mutation induces skin inflammation, a knock-in mouse strain was generated that allows tamoxifen-induced expression of the homologous Card14E138A mutation from the endogenous mouse Card14 locus. Heterozygous expression of CARD14E138A rapidly induced skin acanthosis, immune cell infiltration and expression of psoriasis-associated pro-inflammatory genes. Homozygous expression of CARD14E138A induced more extensive skin inflammation and a severe systemic disease involving infiltration of myeloid cells in multiple organs, temperature reduction, weight loss and organ failure. This severe phenotype resembled acute exacerbations of generalized pustular psoriasis (GPP), a rare form of psoriasis that can be caused by CARD14 mutations in patients. CARD14E138A-induced skin inflammation and systemic disease were independent of adaptive immune cells, ameliorated by blocking TNF and induced by CARD14E138A signalling only in keratinocytes. These results suggest that anti-inflammatory therapies specifically targeting keratinocytes, rather than systemic biologicals, might be effective for GPP treatment early in disease progression.

Data availability

The RNA-Seq data generated in this article was deposited in the GEO repository (GSE149880).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Joan Manils

    Immune Cell Signaling, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8429-1295
  2. Louise V Webb

    Immune Cell Signaling, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashleigh Howes

    National Heart Institute, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Julia Janzen

    Immune Cell Signaling, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefan Boeing

    Bionformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne M Bowcock

    Dermatology, and Genetics & Genome Sciences, Icahn School of Medicine at Mount Sinai, New Yok, United States
    For correspondence
    anne.bowcock@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8691-9090
  7. Steven C Ley

    Immunology & Inflammation, Imperial College London, London, United Kingdom
    For correspondence
    sley@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5911-9223

Funding

Francis Crick Institute (FC001103)

  • Joan Manils
  • Louise V Webb
  • Julia Janzen
  • Stefan Boeing
  • Steven C Ley

National Psoriasis Foundation (WMIS_P74088)

  • Joan Manils

British Heart Foundation (PG/15/57/31580)

  • Louise V Webb

National Institutes of Health (R01AR05026)

  • Ashleigh Howes
  • Anne M Bowcock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carla V Rothlin, Yale School of Medicine, United States

Ethics

Animal experimentation: Mice were bred and maintained under specific pathogen-free conditions at the Francis Crick 787 Institute. Experiments were performed in accordance with UK Home Office regulations and endorsed by the Francis Crick Institute Animal Welfare and Ethical Review Body under the Procedure Project Licence 70/8819. Rosa26CreERT2 (Seibler et al., 2003), Krt14CreERT2 (Hong et al., 2004), VillinCreERT2 (el Marjou et al., 2004) and Rag1-/- (Spanopoulou et al., 1994) mouse lines have been described previously.

Version history

  1. Received: March 7, 2020
  2. Accepted: June 26, 2020
  3. Accepted Manuscript published: June 29, 2020 (version 1)
  4. Version of Record published: July 10, 2020 (version 2)

Copyright

© 2020, Manils et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,188
    views
  • 295
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joan Manils
  2. Louise V Webb
  3. Ashleigh Howes
  4. Julia Janzen
  5. Stefan Boeing
  6. Anne M Bowcock
  7. Steven C Ley
(2020)
CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation
eLife 9:e56720.
https://doi.org/10.7554/eLife.56720

Share this article

https://doi.org/10.7554/eLife.56720

Further reading

    1. Immunology and Inflammation
    Thomas Morgan Li, Victoria Zyulina ... Theresa T Lu
    Research Article Updated

    The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.

    1. Immunology and Inflammation
    Xiaochan Xu, Bjarke Frost Nielsen, Kim Sneppen
    Research Article

    SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape the early innate immune response. The delay has been attributed to a deficiency in the ability of cells to sense viral replication upon infection, which in turn hampers activation of the antiviral state in bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection as a function of virus and host-dependent parameters. The model suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a consequence of high sensitivity to slight variations in biological parameters near a critical threshold. It further suggests that within-host viral proliferation can be curtailed by the presence of remarkably few cells that are primed for IFN production. Thus, the observed heterogeneity in defense readiness of cells reflects a remarkably cost-efficient strategy for protection.