A size principle for recruitment of Drosophila leg motor neurons

  1. Anthony W Azevedo
  2. Evyn S Dickinson
  3. Pralaksha Gurung
  4. Lalanti Venkatasubramanian
  5. Richard S Mann
  6. John C Tuthill  Is a corresponding author
  1. University of Washington, United States
  2. Columbia University, United States

Abstract

To move the body, the brain must precisely coordinate patterns of activity among diverse populations of motor neurons. Here, we use in vivo calcium imaging, electrophysiology, and behavior to understand how genetically-identified motor neurons control flexion of the fruit fly tibia. We find that leg motor neurons exhibit a coordinated gradient of anatomical, physiological, and functional properties. Large, fast motor neurons control high force, ballistic movements while small, slow motor neurons control low force, postural movements. Intermediate neurons fall between these two extremes. This hierarchical organization resembles the size principle, first proposed as a mechanism for establishing recruitment order among vertebrate motor neurons. Recordings in behaving flies confirmed that motor neurons are typically recruited in order from slow to fast. However, we also find that fast, intermediate, and slow motor neurons receive distinct proprioceptive feedback signals, suggesting that the size principle is not the only mechanism that dictates motor neuron recruitment. Overall, this work reveals the functional organization of the fly leg motor system and establishes Drosophila as a tractable system for investigating neural mechanisms of limb motor control.

Data availability

All data is publicly available on Dryad doi:10.5061/dryad.76hdr7stb

The following data sets were generated

Article and author information

Author details

  1. Anthony W Azevedo

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Evyn S Dickinson

    Dept of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pralaksha Gurung

    Dept of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lalanti Venkatasubramanian

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9280-8335
  5. Richard S Mann

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4749-2765
  6. John C Tuthill

    Dept of Physiology and Biophysics, University of Washington, Seattle, United States
    For correspondence
    johnctuthill@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5689-5806

Funding

NIH (U19NS104655)

  • Anthony W Azevedo
  • Evyn S Dickinson
  • Pralaksha Gurung
  • Lalanti Venkatasubramanian
  • Richard S Mann
  • John C Tuthill

Searle Foundation (Scholar Award)

  • Anthony W Azevedo
  • Evyn S Dickinson
  • Pralaksha Gurung
  • John C Tuthill

McKnight Foundation (Scholar Award)

  • Anthony W Azevedo
  • Evyn S Dickinson
  • Pralaksha Gurung
  • John C Tuthill

Pew Biomedical Trust (Scholar Award)

  • Anthony W Azevedo
  • Evyn S Dickinson
  • Pralaksha Gurung
  • John C Tuthill

Sloan Foundation (Research Fellowship)

  • Anthony W Azevedo
  • Evyn S Dickinson
  • Pralaksha Gurung
  • John C Tuthill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: March 9, 2020
  2. Accepted: June 1, 2020
  3. Accepted Manuscript published: June 3, 2020 (version 1)
  4. Version of Record published: July 9, 2020 (version 2)

Copyright

© 2020, Azevedo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,666
    views
  • 533
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony W Azevedo
  2. Evyn S Dickinson
  3. Pralaksha Gurung
  4. Lalanti Venkatasubramanian
  5. Richard S Mann
  6. John C Tuthill
(2020)
A size principle for recruitment of Drosophila leg motor neurons
eLife 9:e56754.
https://doi.org/10.7554/eLife.56754

Share this article

https://doi.org/10.7554/eLife.56754

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.