Dissecting cell type-specific metabolism in pancreatic ductal adenocarcinoma

  1. Allison N Lau
  2. Zhaoqi Li
  3. Laura V Danai
  4. Anna M Westermark
  5. Alicia M Darnell
  6. Raphael Ferreira
  7. Vasilena Gocheva
  8. Sharanya Sivanand
  9. Evan C Lien
  10. Kiera M Sapp
  11. Jared R Mayers
  12. Giulia Biffi
  13. Christopher R Chin
  14. Shawn M Davidson
  15. David A Tuveson
  16. Tyler Jacks
  17. Nicholas J Matheson
  18. Omer Yilmaz
  19. Matthew G Vander Heiden  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. University of Massachusetts, Amherst, United States
  3. Harvard Medical School, United States
  4. Cold Spring Harbor Laboratory, United States
  5. University of Cambridge, United Kingdom

Abstract

Tumors are composed of many different cell types including cancer cells, fibroblasts, and immune cells. Dissecting functional metabolic differences between cell types within a mixed population can be challenging due to the rapid turnover of metabolites relative to the time needed to isolate cells. To overcome this challenge, we traced isotope-labeled nutrients into macromolecules that turn over more slowly than metabolites. This approach was used to assess differences between cancer cell and fibroblast metabolism in murine pancreatic cancer organoid-fibroblast co-cultures and tumors. Pancreatic cancer cells exhibited increased pyruvate carboxylation relative to fibroblasts, and this flux depended on both pyruvate carboxylase and malic enzyme 1 activity. Consequently, expression of both enzymes in cancer cells was necessary for organoid and tumor growth, demonstrating that dissecting the metabolism of specific cell populations within heterogeneous systems can identify dependencies that may not be evident from studying isolated cells in culture or bulk tissue.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Allison N Lau

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Zhaoqi Li

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Laura V Danai

    Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA, United States
    Competing interests
    No competing interests declared.
  4. Anna M Westermark

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Alicia M Darnell

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Raphael Ferreira

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9881-6232
  7. Vasilena Gocheva

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Sharanya Sivanand

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Evan C Lien

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Kiera M Sapp

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Jared R Mayers

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8607-1787
  12. Giulia Biffi

    Cancer and Molecular Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  13. Christopher R Chin

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  14. Shawn M Davidson

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  15. David A Tuveson

    Cancer and Molecular Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  16. Tyler Jacks

    Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    Tyler Jacks, T.J. is a member of the Board of Directors of Amgen and Thermo Fisher Scientific, is a co-Founder of Dragonfly Therapeutics and T2 Biosystems, and is a scientific advisor of SQZ Biotech, and Skyhawk Therapeutics..
  17. Nicholas J Matheson

    Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3318-1851
  18. Omer Yilmaz

    Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  19. Matthew G Vander Heiden

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    mvh@mit.edu
    Competing interests
    Matthew G Vander Heiden, Reviewing editor, eLife; is a scientific advisor for Agios Pharmaceuticals, Aeglea Biotherapeutics, iTeos Therapeutics, and Auron Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6702-4192

Funding

Damon Runyon Cancer Research Foundation (DRG-2241-15)

  • Allison N Lau

National Cancer Institute (U54CA163109)

  • Vasilena Gocheva

Human Frontiers Science Program (LT000195/2015-L)

  • Giulia Biffi

EMBO (ALTF 1203-2014)

  • Giulia Biffi

Howard Hughes Medical Institute

  • Tyler Jacks
  • Matthew G Vander Heiden

MRC (CSF MR/P008801/1)

  • Nicholas J Matheson

NHSBT (WPA15-02)

  • Nicholas J Matheson

NIHR Cambridge BRC

  • Nicholas J Matheson

National Institutes of Health (R01CA211184)

  • Omer Yilmaz

National Institutes of Health (R01CA034992)

  • Omer Yilmaz

Lustgarten Foundation

  • Matthew G Vander Heiden

Damon Runyon Cancer Research Foundation (DRG-2367-19)

  • Sharanya Sivanand

Stand Up To Cancer

  • Matthew G Vander Heiden

MIT Center for Precision Cancer Medicine

  • Matthew G Vander Heiden

Ludwig Center at MIT

  • Tyler Jacks
  • Matthew G Vander Heiden

Emerald Foundation

  • Matthew G Vander Heiden

National Cancer Institute (R01CA168653)

  • Matthew G Vander Heiden

National Cancer Institute (R01CA201276)

  • Matthew G Vander Heiden

National Cancer Institute (R35CA242379)

  • Matthew G Vander Heiden

National Cancer Institute (P30CA14051)

  • Matthew G Vander Heiden

Damon Runyon Cancer Research Foundation (DRG-2299-17)

  • Evan C Lien

National Cancer Institute (K99CA234221)

  • Allison N Lau

National Institutes of Health (T32GM007287)

  • Zhaoqi Li
  • Kiera M Sapp

Jane Coffin Childs Memorial Fund for Medical Research

  • Alicia M Darnell
  • Vasilena Gocheva

Swedish Foundation for Strategic Research

  • Raphael Ferreira

Knut and Alice Wallenberg Foundation

  • Raphael Ferreira

Barbro Osher Pro Suecia Foundation

  • Raphael Ferreira

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the MIT Committee on Animal Care under protocol #0119-001-22.

Reviewing Editor

  1. Ralph DeBerardinis, UT Southwestern Medical Center, United States

Version history

  1. Received: March 9, 2020
  2. Accepted: July 9, 2020
  3. Accepted Manuscript published: July 10, 2020 (version 1)
  4. Version of Record published: August 5, 2020 (version 2)

Copyright

© 2020, Lau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,587
    Page views
  • 1,178
    Downloads
  • 51
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Allison N Lau
  2. Zhaoqi Li
  3. Laura V Danai
  4. Anna M Westermark
  5. Alicia M Darnell
  6. Raphael Ferreira
  7. Vasilena Gocheva
  8. Sharanya Sivanand
  9. Evan C Lien
  10. Kiera M Sapp
  11. Jared R Mayers
  12. Giulia Biffi
  13. Christopher R Chin
  14. Shawn M Davidson
  15. David A Tuveson
  16. Tyler Jacks
  17. Nicholas J Matheson
  18. Omer Yilmaz
  19. Matthew G Vander Heiden
(2020)
Dissecting cell type-specific metabolism in pancreatic ductal adenocarcinoma
eLife 9:e56782.
https://doi.org/10.7554/eLife.56782

Further reading

    1. Cancer Biology
    Gehad Youssef, Luke Gammon ... Adrian Biddle
    Research Article

    Cancer stem cells (CSCs) undergo epithelial-mesenchymal transition (EMT) to drive metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT have not been observed disseminating into the tissue surrounding human tumour specimens, leaving the relevance to human cancer uncertain. We have previously identified both EpCAM and CD24 as CSC markers that, alongside the mesenchymal marker Vimentin, identify EMT CSCs in human oral cancer cell lines. This afforded the opportunity to investigate whether the combination of these three markers can identify disseminating EMT CSCs in actual human tumours. Examining disseminating tumour cells in over 12,000 imaging fields from 74 human oral tumours, we see a significant enrichment of EpCAM, CD24 and Vimentin co-stained cells disseminating beyond the tumour body in metastatic specimens. Through training an artificial neural network, these predict metastasis with high accuracy (cross-validated accuracy of 87-89%). In this study, we have observed single disseminating EMT CSCs in human oral cancer specimens, and these are highly predictive of metastatic disease.

    1. Cancer Biology
    2. Medicine
    Dingyu Rao, Hua Lu ... Defa Huang
    Research Article

    Esophageal cancer (EC) is a fatal digestive disease with a poor prognosis and frequent lymphatic metastases. Nevertheless, reliable biomarkers for EC diagnosis are currently unavailable. Accordingly, we have performed a comparative proteomics analysis on cancer and paracancer tissue-derived exosomes from eight pairs of EC patients using label-free quantification proteomics profiling and have analyzed the differentially expressed proteins through bioinformatics. Furthermore, nano-flow cytometry (NanoFCM) was used to validate the candidate proteins from plasma-derived exosomes in 122 EC patients. Of the 803 differentially expressed proteins discovered in cancer and paracancer tissue-derived exosomes, 686 were up-regulated and 117 were down-regulated. Intercellular adhesion molecule-1 (CD54) was identified as an up-regulated candidate for further investigation, and its high expression in cancer tissues of EC patients was validated using immunohistochemistry, real-time quantitative PCR (RT-qPCR), and western blot analyses. In addition, plasma-derived exosome NanoFCM data from 122 EC patients concurred with our proteomic analysis. The receiver operating characteristic (ROC) analysis demonstrated that the AUC, sensitivity, and specificity values for CD54 were 0.702, 66.13%, and 71.31%, respectively, for EC diagnosis. Small interference (si)RNA was employed to silence the CD54 gene in EC cells. A series of assays, including cell counting kit-8, adhesion, wound healing, and Matrigel invasion, were performed to investigate EC viability, adhesive, migratory, and invasive abilities, respectively. The results showed that CD54 promoted EC proliferation, migration, and invasion. Collectively, tissue-derived exosomal proteomics strongly demonstrates that CD54 is a promising biomarker for EC diagnosis and a key molecule for EC development.