Dissecting cell type-specific metabolism in pancreatic ductal adenocarcinoma

  1. Allison N Lau
  2. Zhaoqi Li
  3. Laura V Danai
  4. Anna M Westermark
  5. Alicia M Darnell
  6. Raphael Ferreira
  7. Vasilena Gocheva
  8. Sharanya Sivanand
  9. Evan C Lien
  10. Kiera M Sapp
  11. Jared R Mayers
  12. Giulia Biffi
  13. Christopher R Chin
  14. Shawn M Davidson
  15. David A Tuveson
  16. Tyler Jacks
  17. Nicholas J Matheson
  18. Omer Yilmaz
  19. Matthew G Vander Heiden  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. University of Massachusetts, Amherst, United States
  3. Harvard Medical School, United States
  4. Cold Spring Harbor Laboratory, United States
  5. University of Cambridge, United Kingdom

Abstract

Tumors are composed of many different cell types including cancer cells, fibroblasts, and immune cells. Dissecting functional metabolic differences between cell types within a mixed population can be challenging due to the rapid turnover of metabolites relative to the time needed to isolate cells. To overcome this challenge, we traced isotope-labeled nutrients into macromolecules that turn over more slowly than metabolites. This approach was used to assess differences between cancer cell and fibroblast metabolism in murine pancreatic cancer organoid-fibroblast co-cultures and tumors. Pancreatic cancer cells exhibited increased pyruvate carboxylation relative to fibroblasts, and this flux depended on both pyruvate carboxylase and malic enzyme 1 activity. Consequently, expression of both enzymes in cancer cells was necessary for organoid and tumor growth, demonstrating that dissecting the metabolism of specific cell populations within heterogeneous systems can identify dependencies that may not be evident from studying isolated cells in culture or bulk tissue.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Allison N Lau

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Zhaoqi Li

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Laura V Danai

    Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA, United States
    Competing interests
    No competing interests declared.
  4. Anna M Westermark

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Alicia M Darnell

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Raphael Ferreira

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9881-6232
  7. Vasilena Gocheva

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Sharanya Sivanand

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Evan C Lien

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Kiera M Sapp

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Jared R Mayers

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8607-1787
  12. Giulia Biffi

    Cancer and Molecular Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  13. Christopher R Chin

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  14. Shawn M Davidson

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  15. David A Tuveson

    Cancer and Molecular Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  16. Tyler Jacks

    Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    Tyler Jacks, T.J. is a member of the Board of Directors of Amgen and Thermo Fisher Scientific, is a co-Founder of Dragonfly Therapeutics and T2 Biosystems, and is a scientific advisor of SQZ Biotech, and Skyhawk Therapeutics..
  17. Nicholas J Matheson

    Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3318-1851
  18. Omer Yilmaz

    Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  19. Matthew G Vander Heiden

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    mvh@mit.edu
    Competing interests
    Matthew G Vander Heiden, Reviewing editor, eLife; is a scientific advisor for Agios Pharmaceuticals, Aeglea Biotherapeutics, iTeos Therapeutics, and Auron Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6702-4192

Funding

Damon Runyon Cancer Research Foundation (DRG-2241-15)

  • Allison N Lau

National Cancer Institute (U54CA163109)

  • Vasilena Gocheva

Human Frontiers Science Program (LT000195/2015-L)

  • Giulia Biffi

EMBO (ALTF 1203-2014)

  • Giulia Biffi

Howard Hughes Medical Institute

  • Tyler Jacks
  • Matthew G Vander Heiden

MRC (CSF MR/P008801/1)

  • Nicholas J Matheson

NHSBT (WPA15-02)

  • Nicholas J Matheson

NIHR Cambridge BRC

  • Nicholas J Matheson

National Institutes of Health (R01CA211184)

  • Omer Yilmaz

National Institutes of Health (R01CA034992)

  • Omer Yilmaz

Lustgarten Foundation

  • Matthew G Vander Heiden

Damon Runyon Cancer Research Foundation (DRG-2367-19)

  • Sharanya Sivanand

Stand Up To Cancer

  • Matthew G Vander Heiden

MIT Center for Precision Cancer Medicine

  • Matthew G Vander Heiden

Ludwig Center at MIT

  • Tyler Jacks
  • Matthew G Vander Heiden

Emerald Foundation

  • Matthew G Vander Heiden

National Cancer Institute (R01CA168653)

  • Matthew G Vander Heiden

National Cancer Institute (R01CA201276)

  • Matthew G Vander Heiden

National Cancer Institute (R35CA242379)

  • Matthew G Vander Heiden

National Cancer Institute (P30CA14051)

  • Matthew G Vander Heiden

Damon Runyon Cancer Research Foundation (DRG-2299-17)

  • Evan C Lien

National Cancer Institute (K99CA234221)

  • Allison N Lau

National Institutes of Health (T32GM007287)

  • Zhaoqi Li
  • Kiera M Sapp

Jane Coffin Childs Memorial Fund for Medical Research

  • Alicia M Darnell
  • Vasilena Gocheva

Swedish Foundation for Strategic Research

  • Raphael Ferreira

Knut and Alice Wallenberg Foundation

  • Raphael Ferreira

Barbro Osher Pro Suecia Foundation

  • Raphael Ferreira

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the MIT Committee on Animal Care under protocol #0119-001-22.

Copyright

© 2020, Lau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,009
    views
  • 1,229
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Allison N Lau
  2. Zhaoqi Li
  3. Laura V Danai
  4. Anna M Westermark
  5. Alicia M Darnell
  6. Raphael Ferreira
  7. Vasilena Gocheva
  8. Sharanya Sivanand
  9. Evan C Lien
  10. Kiera M Sapp
  11. Jared R Mayers
  12. Giulia Biffi
  13. Christopher R Chin
  14. Shawn M Davidson
  15. David A Tuveson
  16. Tyler Jacks
  17. Nicholas J Matheson
  18. Omer Yilmaz
  19. Matthew G Vander Heiden
(2020)
Dissecting cell type-specific metabolism in pancreatic ductal adenocarcinoma
eLife 9:e56782.
https://doi.org/10.7554/eLife.56782

Share this article

https://doi.org/10.7554/eLife.56782

Further reading

    1. Cancer Biology
    Ruijing Tang, Luobin Guo ... Xiaolong Liu
    Research Article

    Tumor neoantigen peptide vaccines hold potential for boosting cancer immunotherapy, yet efficiently co-delivering peptides and adjuvants to antigen-presenting cells in vivo remains challenging. Virus-like particle (VLP), which is a kind of multiprotein structure organized as virus, can deliver therapeutic substances into cells and stimulate immune response. However, the weak targeted delivery of VLP in vivo and its susceptibility to neutralization by antibodies hinder their clinical applications. Here, we first designed a novel protein carrier using the mammalian-derived capsid protein PEG10, which can self-assemble into endogenous VLP (eVLP) with high protein loading and transfection efficiency. Then, an engineered tumor vaccine, named ePAC, was developed by packaging genetically encoded neoantigen into eVLP with further modification of CpG-ODN on its surface to serve as an adjuvant and targeting unit to dendritic cells (DCs). Significantly, ePAC can efficiently target and transport neoantigens to DCs, and promote DCs maturation to induce neoantigen-specific T cells. Moreover, in mouse orthotopic liver cancer and humanized mouse tumor models, ePAC combined with anti-TIM-3 exhibited remarkable antitumor efficacy. Overall, these results support that ePAC could be safely utilized as cancer vaccines for antitumor therapy, showing significant potential for clinical translation.

    1. Cancer Biology
    Elazar Besser, Anat Gelfand ... David Meiri
    Research Article

    In T-cell acute lymphoblastic leukemia (T-ALL), more than 50% of cases display autoactivation of Notch1 signaling, leading to oncogenic transformation. We have previously identified a specific chemovar of Cannabis that induces apoptosis by preventing Notch1 maturation in leukemia cells. Here, we isolated three cannabinoids from this chemovar that synergistically mimic the effects of the whole extract. Two were previously known, cannabidiol (CBD) and cannabidivarin (CBDV), whereas the third cannabinoid, which we termed 331-18A, was identified and fully characterized in this study. We demonstrated that these cannabinoids act through cannabinoid receptor type 2 and TRPV1 to activate the integrated stress response pathway by depleting intracellular Ca2+. This is followed by increased mRNA and protein expression of ATF4, CHOP, and CHAC1, which is hindered by inhibiting the upstream initiation factor eIF2α. The increased abundance of CHAC1 prevents Notch1 maturation, thereby reducing the levels of the active Notch1 intracellular domain, and consequently decreasing cell viability and increasing apoptosis. Treatment with the three isolated molecules resulted in reduced tumor size and weight in vivo and slowed leukemia progression in mice models. Altogether, this study elucidated the mechanism of action of three distinct cannabinoids in modulating the Notch1 pathway, and constitutes an important step in the establishment of a new therapy for treating NOTCH1-mutated diseases and cancers such as T-ALL.