α-Synuclein strains that cause distinct pathologies differentially inhibit proteasome

  1. Genjiro Suzuki  Is a corresponding author
  2. Sei Imura
  3. Masato Hosokawa
  4. Ryu Katsumata
  5. Takashi Nonaka
  6. Shin-Ichi Hisanaga
  7. Yasushi Saeki
  8. Masato Hasegawa  Is a corresponding author
  1. Tokyo Metropolitan Institute of Medical Science, Japan
  2. Tokyo Metropolitan University, Japan

Abstract

Abnormal α-synuclein aggregation has been implicated in several diseases and is known to spread in a prion-like manner. There is a relationship between protein aggregate structure (strain) and clinical phenotype in prion diseases, however, whether differences in the strains of α‑synuclein aggregates account for the different pathologies remained unclear. Here, we generated two types of α-synuclein fibrils from identical monomer and investigated their seeding and propagation ability in mice and primary-cultured neurons. One α-synuclein fibril induced marked accumulation of phosphorylated α-synuclein and ubiquitinated protein aggregates, while the other did not, indicating the formation of α-synuclein two strains. Notably, the former α‑synuclein strain inhibited proteasome activity and co-precipitated with 26S proteasome complex. Further examination indicated that structural differences in the C-terminal region of α‑synuclein strains lead to different effects on proteasome activity. These results provide a possible molecular mechanism to account for the different pathologies induced by different α‑synuclein strains.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 3, 4 and 5.

Article and author information

Author details

  1. Genjiro Suzuki

    Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    For correspondence
    suzuki-gj@igakuken.or.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1400-4139
  2. Sei Imura

    Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Masato Hosokawa

    Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Ryu Katsumata

    Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Takashi Nonaka

    Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0830-9403
  6. Shin-Ichi Hisanaga

    Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Yasushi Saeki

    Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Masato Hasegawa

    Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    For correspondence
    hasegawa-ms@igakuken.or.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (16K21650)

  • Genjiro Suzuki

Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care

  • Genjiro Suzuki

Kato Memorial Bioscience Foundation

  • Genjiro Suzuki

Ministry of Education, Culture, Sports, Science, and Technology (26117005)

  • Masato Hasegawa

Core Research for Evolutional Science and Technology (JPMJCR18H3)

  • Masato Hasegawa

Japan Agency for Medical Research and Development (JP18dm0207019)

  • Masato Hasegawa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hitoshi Nakatogawa, Tokyo Institute of Technology, Japan

Ethics

Animal experimentation: All experimental protocols were performed according to the recommendations of the Animal Care and Use Committee of Tokyo Metropolitan Institute of Medical Science (#18040, #19042, #20-035) .

Version history

  1. Received: March 11, 2020
  2. Accepted: July 22, 2020
  3. Accepted Manuscript published: July 22, 2020 (version 1)
  4. Version of Record published: August 5, 2020 (version 2)

Copyright

© 2020, Suzuki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,533
    views
  • 689
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Genjiro Suzuki
  2. Sei Imura
  3. Masato Hosokawa
  4. Ryu Katsumata
  5. Takashi Nonaka
  6. Shin-Ichi Hisanaga
  7. Yasushi Saeki
  8. Masato Hasegawa
(2020)
α-Synuclein strains that cause distinct pathologies differentially inhibit proteasome
eLife 9:e56825.
https://doi.org/10.7554/eLife.56825

Share this article

https://doi.org/10.7554/eLife.56825

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.