Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance

  1. Jun-ichi Kishikawa
  2. Atsuko Nakanishi
  3. Aya Furuta
  4. Takayuki Kato
  5. Keiichi Namba
  6. Masatada Tamakoshi
  7. Kaoru Mitsuoka
  8. Ken Yokoyama  Is a corresponding author
  1. Kyoto Sangyo University, Japan
  2. Osaka University, Japan
  3. Tokyo University of Pharmacy and Life Sciences, Japan

Abstract

V-ATPase is an energy converting enzyme, coupling ATP hydrolysis/synthesis in the hydrophilic V1 domain, with proton flow through the Vo membrane domain, via rotation of the central rotor complex relative to the surrounding stator apparatus. Upon dissociation from the V1 domain, the Vo domain of the eukaryotic V-ATPase can adopt a physiologically relevant auto-inhibited form in which proton conductance through the Vo domain is prevented, however the molecular mechanism of this inhibition is not fully understood. Using cryo-electron microscopy, we determined the structure of both the holo V/A-ATPase and isolated Vo at near-atomic resolution, respectively. These structures clarify how the isolated Vo domain adopts the auto-inhibited form and how the holo complex prevents formation of the inhibited Vo form.

Data availability

The density maps and the built models for Tth VoV1, Tth V1 (focused refined), and Tth Vo were deposited in EMDB (EMDB ID; 30013, 30014, and 30015) and PDB (PDB ID; 6LY8 for V1 and 6LY9 for isolated Vo), respectively. All data is available in the main text or the supplementary materials.

The following data sets were generated

Article and author information

Author details

  1. Jun-ichi Kishikawa

    Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Atsuko Nakanishi

    Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Aya Furuta

    Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Takayuki Kato

    Institute for Protein Research, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Keiichi Namba

    Institute for Protein Research, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Masatada Tamakoshi

    Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kaoru Mitsuoka

    Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Ken Yokoyama

    Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
    For correspondence
    yokoken@cc.kyoto-su.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6813-1096

Funding

Japan Society for the Promotion of Science (17H03648)

  • Ken Yokoyama

Japan Agency for Medical Research and Development (JP17am0101001)

  • Kaoru Mitsuoka

Ministry of Education, Culture, Sports, Science, and Technology (12024046)

  • Kaoru Mitsuoka

Takeda Science Foundation

  • Ken Yokoyama

Japan Science and Technology Agency (JPMJCR1865)

  • Kaoru Mitsuoka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David M Kramer, Michigan State University, United States

Version history

  1. Received: March 12, 2020
  2. Accepted: July 7, 2020
  3. Accepted Manuscript published: July 8, 2020 (version 1)
  4. Version of Record published: July 17, 2020 (version 2)

Copyright

© 2020, Kishikawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,094
    views
  • 338
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jun-ichi Kishikawa
  2. Atsuko Nakanishi
  3. Aya Furuta
  4. Takayuki Kato
  5. Keiichi Namba
  6. Masatada Tamakoshi
  7. Kaoru Mitsuoka
  8. Ken Yokoyama
(2020)
Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance
eLife 9:e56862.
https://doi.org/10.7554/eLife.56862

Share this article

https://doi.org/10.7554/eLife.56862

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.