LKB1 coordinates neurite remodeling to drive synapse layer emergence in the outer retina
Abstract
Structural changes in pre and postsynaptic neurons that accompany synapse formation often temporally and spatially overlap. Thus, it has been difficult to resolve which processes drive patterned connectivity. To overcome this, we use the laminated outer murine retina. We identify the serine/threonine kinase LKB1 as a key driver of synapse layer emergence. The absence of LKB1 in the retina caused a marked mislocalization and delay in synapse layer formation. In parallel, LKB1 modulated postsynaptic horizontal cell refinement and presynaptic photoreceptor axon growth. Mislocalized horizontal cell processes contacted aberrant cone axons in LKB1 mutants. These defects coincided with altered synapse protein organization, and horizontal cell neurites were misdirected to ectopic synapse protein regions. Together, these data suggest that LKB1 instructs the timing and location of connectivity in the outer retina via coordinate regulation of pre and postsynaptic neuron structure and the localization of synapse-associated proteins.
Data availability
Source data analysis code have been provided from Figures 1-4.
Article and author information
Author details
Funding
National Institute on Aging (1R56AG061808-01)
- Melanie A Samuel
National Eye Institute (R01 EY030458-01)
- Melanie A Samuel
Ted Nash Foundation
- Melanie A Samuel
Brain Reserach Foundation
- Melanie A Samuel
National Eye Institute (DP2EY027984-02)
- Melanie A Samuel
National Eye Institute (T32EY007001)
- Courtney A Burger
National Institute of General Medical Sciences (T32GM088129)
- Nicholas E Albrecht
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Experiments were carried out in male and female mice in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the NIH under protocols approved by the BCM Institutional Animal Care and Use Committee (AN6785). Every effort was made to minimize animal suffering.
Reviewing Editor
- Gary L Westbrook, Oregon Health and Science University, United States
Publication history
- Received: March 25, 2020
- Accepted: April 11, 2020
- Accepted Manuscript published: May 7, 2020 (version 1)
- Version of Record published: May 19, 2020 (version 2)
Copyright
© 2020, Burger et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,470
- Page views
-
- 233
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
According to the efficient coding hypothesis, sensory neurons are adapted to provide maximal information about the environment, given some biophysical constraints. In early visual areas, stimulus-induced modulations of neural activity (or tunings) are predominantly single-peaked. However, periodic tuning, as exhibited by grid cells, has been linked to a significant increase in decoding performance. Does this imply that the tuning curves in early visual areas are sub-optimal? We argue that the time scale at which neurons encode information is imperative to understand the advantages of single-peaked and periodic tuning curves, respectively. Here, we show that the possibility of catastrophic (large) errors creates a trade-off between decoding time and decoding ability. We investigate how decoding time and stimulus dimensionality affect the optimal shape of tuning curves for removing catastrophic errors. In particular, we focus on the spatial periods of the tuning curves for a class of circular tuning curves. We show an overall trend for minimal decoding time to increase with increasing Fisher information, implying a trade-off between accuracy and speed. This trade-off is reinforced whenever the stimulus dimensionality is high, or there is ongoing activity. Thus, given constraints on processing speed, we present normative arguments for the existence of the single-peaked tuning organization observed in early visual areas.
-
- Genetics and Genomics
- Neuroscience
Aging is a major risk factor for Alzheimer’s disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell-type-specific manner. Integration of cellular abundance and gene expression pinpoints nuclear factor kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell-type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.